R&D Evaluation Methodology and Funding Principles

Final report 1: The R&D Evaluation Methodology
R&D Evaluation Methodology and Funding Principles

Final report 1: The R&D Evaluation Methodology

May 2015

Bea Mahieu, Erik Arnold – Technopolis Group
Summary

This report is one of the three Final reports of the study developing an evaluation methodology and institutional funding principles for the R&D system in the Czech Republic. It describes the methodology for the National Evaluation of Research Organisations (NERO) in the Czech Republic.

Evaluation constitutes a key component of the policy cycle. In order to be effective and reach the desired results, an evaluation system should be well understood and trusted – by all stakeholders, and the evaluation procedures need to be built on consensus. The design of the evaluation methodology in this study is therefore to be conceived as a first step in a longer-term process, based on consultation of all actors involved and final policy decision-making. The Evaluation Methodology that we propose sets the basis for a new research evaluation and funding system and provides a concrete model for its implementation. It is based on a thorough analysis of international practice while taking into proper consideration the applicability of methods and tools in the context of the Czech R&D system.

The objectives for this study are to design an R&D evaluation methodology with a pronounced formative function, providing strategic information to actors at all levels in the R&D system, as well as informing the performance-based funding system (PRFS). It was expected to include all research organisations (ROs) while taking into account the differences among types of research organisations and disciplinary cultures.

The research community in the Czech Republic is composed of researchers employed in universities, public research institutes (including those ‘grouped’ in the Academy of Sciences and ‘sectoral’ public research institutes), private research institutions, and industry. Key actors in public research are the public universities and the research institutes of the Academy of Sciences. Only those institutions that are recognised as research organisations (ROs) are entitled to public institutional support for research.

Concepts and approaches to evaluation and its design in the international practice that are of particular interest for this study are:

- Evaluation is an integral part of the policy cycle. The national R&D policy is therefore a major factor influencing the design of a national evaluation methodology.
- Evaluations at the national level cover (also) the performance of research institutions and their management. However, the depth of assessment is more limited than in evaluations conducted at the institutional level, and the focus of the assessment is determined by the needs for strategic information at the national level as well as the purpose of the evaluation, e.g. to inform a performance-based research funding system (PRFS)
- The evaluation should take account of the differences among research organisations in terms of their ‘mission in society’. For this purpose, a categorisation of the research organisations in relation to their function in the National Innovation System is needed
- Bibliometrics and statistical data analyses require a minimum number of data to ensure robustness. Seeing the fragmentation in the Czech system, this implies the need for a minimum threshold for participation to the evaluation (but not for the institutional funding system)
- Informed peer review, i.e. the combined use of expert panels and bibliometrics, is common best practice
Final report 1: The R&D Evaluation Methodology

- Also peer reviews have their shortcomings and risks, but these can be overcome through the use of bibliometrics, combined with specific rulings and structural measures.

- Submission of research outputs for review by research groups or departments rather than individual researchers avoids the creation of considerable negative effects on career prospects, ‘employment markets’ and the R&D system as a whole.

- There are considerable differences among scientific disciplines and even sub-disciplines. They are expressed in terms of output types, main publication patterns, channels and timelines, citation behaviours, language of publication, collaboration behaviours and needs, intensity of the use and need of (human and financial) resources and research infrastructure, and last but not least, their societal mission and the way they create and transfer knowledge.

- Discipline-based panels have the highest level of capacity to take field-specifics in concern during the assessment. There must, however, be consistency in assessment among disciplines and only a limited number of field adjustments should be allowed.

- Inter-disciplinary research is a challenge for any assessment method, but less so for peer reviews.

- Indicators and assessment criteria for research performance assessments are closely related to the theory of knowledge. Knowledge (both codified and tacit) is the major outcome of science and research; it also constitutes its major value – for research, industry and society alike.

- An evaluation system that intends to understand research performance in its broader sense, i.e. not limited to the size and scientific quality of research outputs, focuses on assessing the intensity of the knowledge transfer mechanisms. Knowledge transfer mechanisms are understood as pathways to impact, i.e. those aspects that are critical for the creation of impacts.

- A basic concept of evaluation is that indicators should cover the various sequential components of a policy intervention, i.e. the inputs (financial and human resources) for the implementation of activities that are expected to lead to outputs, outcomes and impacts.

- There is a clear trend in international practice, including indicator-based PRFS, to extend the focus of investigation from outputs (only) to outcomes, and in some cases even impacts.

- The most appropriate and effective way to avoid unintended effects that some indicators may cause, especially in PRFS (gaming), is to use a mix of quantitative and qualitative indicators to inform an assessment criterion, judged by a peer.

- National evaluations are a costly endeavour and the higher the level of sophistication, the costlier an exercise it becomes, and the lower the balance cost/benefit.
The Evaluation Methodology that we propose has the following key principles and characteristics:

Scope of the evaluation
Scope of the evaluation is the Research Organisations in the Czech Republic, i.e. the research-performing organisations that have been recognised as 'research organisations' by the RD&I Council. In current practice, this implies that they are entitled to institutional funding for research.

The Research Organisations encompass a variety of types of organisations, structured for the purpose of evaluation in four categories based upon their mission in society:

- Scientific Research Organisations (ScRO), encompassing the institutes of the Academy of Sciences, the (public and private) Higher Education Institutes, the research hospitals, and the research infrastructures
- Industry & Business services Research Organisations (IBRO)
- Public Services Research Organisations (PSRO)
- National Resources (NatRes)

All Research Organisations of a minimal size can participate in the evaluation, on a voluntary basis. The threshold criterion is defined in terms of a minimum volume of research outputs, set at 50 scholarly research outputs over the evaluation period.

Objective of the evaluation
Core objective of the evaluation is the improvement of research and research management in the Czech Republic.

The evaluation has two main functions:

- **To collect strategic information** on performance in research and development (R&D) in the Czech Republic and the value of the R&D activities, outputs and outcomes for the advancement of research and for society. The intended beneficiaries of this information are the national policy makers, including the research funding bodies (i.e. ministries and the Academy of Sciences), and institutional management.

- **To inform the allocation of institutional funding for research.** The outcomes of the evaluation will guide the distribution of the performance-based research funding component of the institutional research funding system (envisaged to count in a first instance for 15% of the overall institutional funding).

Overall approach to the evaluation
To meet the objectives outlined above, the evaluation system entails a self-assessment and an international panel review. Input for the expert panel evaluation is, therefore, not only a set of data and information submitted by the participating Research Organisations, but also and foremost the participants’ self-reflections on their performance. The final outcome of the evaluation system will be an assessment of past performance but will also have a forward-looking component, as a result of both the self-assessment and the panel evaluation.

The evaluation will assess the evaluated actors’ role, positioning, and competitive value in the national R&D and innovation system as well as in the international R&D landscape. As research is becoming more and more international, and the competition as well as collaboration in research is at a global level, understanding the position of the research actors in the Czech republic relative to the international level is a critical factor in the assessment. For this purpose, the evaluation adopts as its primary unit of analysis the elements that worldwide constitute the fundamental structure of research, i.e. scientific fields.
The evaluation structure

The evaluation takes place at the level of Evaluated Unit (EvU), i.e. a Research Organisation or for the public HEIs, the organisational unit at the second level of the organisation's structure (faculties, institutes, centres etc).

All Research Organisations and Evaluated Units can participate, on a voluntary basis, provided there is a minimum of critical mass. The minimum volume threshold for participation is set at 50 eligible research outputs over the evaluation period.

Each eligible Evaluated Unit may register one or more Research Units (RU) for participation in the evaluation. A Research Unit is registered for a field of research and an EvU can register only one Research Unit per field. A minimum volume threshold for the registration of a Research Unit is set at 50 eligible research outputs over the evaluated period.

A Research Unit means the group or groups of staff in the Evaluated Unit that conduct their primary research in a specific field, and by extension, the structures and environment that support their research and its application or impact. A Research Unit may comprise staff that work in multiple departments or other organisational units in the Evaluated Unit. An Evaluated Unit staff member can be part of one Research Unit only.

Evaluation method

The evaluation is a process of informed peer review.

International expert panels are at the core of the Evaluation Methodology. Partly working remote, they will draw on a mix of appropriate quantitative and qualitative data to support their professional judgement. A key principle in this evaluation is that metrics inform, but do not substitute for judgment. Expert review is therefore paramount in all phases of the evaluation process.

The panel structure is as follows:

- Subject panels, defined at the level of fields, will carry out the evaluation (envisaged is the use of 24 to 26 panels)
- They will be supported by referees performing per peer review of a select number of submitted ‘most outstanding’ publications. Referees will work at the level of sub-fields
- The Subject panels can call in the support of Specialist advisors
- The Subject panels will work under the leadership and guidance of six Main Panels defined at the level of disciplinary areas

The structure of disciplinary areas, fields and sub-fields is the one defined in the OECD FOS.

Interdisciplinary research

An Evaluated Unit can recommend cross-referrals among the Subject Panels in case inter-disciplinary research in the RU covers different fields within one disciplinary area. For this purpose they should indicate and explain which part of their research is inter-disciplinary. In addition to suggesting the field that is most relevant for the RU (the host field), the RU can mention up to two additional fields. For this purpose they should indicate and explain which part of their research is inter-disciplinary. In addition to suggesting the field that is most relevant for the RU (the host field), the RU can mention up to two additional fields.

An Evaluation Unit can also apply for the registration of an Interdisciplinary Research Unit (IRU) if the research covers multiple fields in different disciplinary areas. An Evaluated Unit can apply for the participation of Inter-disciplinary Research Unit in case it conducts at least 30% of its research activities across disciplinary areas. It will need to make a convincing case that interdisciplinary research is a significant
feature of the research in the IRU and demonstrate that there is a strategic connection and strong collaboration between the researchers active in the different fields. Apart of a general statement explaining the reasons why the status of IRU is considered appropriate, information submitted for this application must include the following three elements: data on research outputs/bibliometrics, the scientific backgrounds of the researchers involved in the IRU, and a statement of research strategy for the evaluated period. If the application is accepted by the relevant Main Panel Chairs, an Ad-hoc panel will be installed. The Ad-hoc panel will be chaired by the most relevant Main panel Chair and will include members from two or more Subject Panels, covering two or more fields.

Assessment criteria

The Evaluation Methodology reflects the strategic policy objectives for the Czech R&D system.

The evaluation is structured around five assessment criteria that jointly enable the fulfilment of the strategic objectives of the evaluation and funding system, i.e. to *reward excellence in research while building capacity - in research and for innovation*. The main assessment criteria are: the research environment, membership of the national and global research community, scientific research excellence, overall research performance, and societal relevance.

For each of these criteria, the Subject Panel will decide (for each Research Unit) on the quality of performance in the form of starred quality levels using a five-point scale (from 1 to 5). For each assessment criterion the values of these quality levels, i.e. the criteria upon which they should be decided, is described. They will not assign a single ‘overall’ quality level score for the Research Units.

The formulation of the values for the assessment criteria is inspired by international practice, but has been adapted to the realities of the Czech R&D system, with an attention to guarantee a sufficient spread of the quality over the starred quality levels. An exception is the criterion of scientific research excellence where the explicit intent is to identify the most excellent of Research Units in the Czech Republic.

Different disciplines and research organisations

The evaluation is a fair and egalitarian system. The Evaluation Methodology uses a single framework for the assessment of all scientific disciplines and RO types, no matter their size, thereby ensuring full comparability of the evaluation results across all dimensions. Comparability is a fundamental condition for the use of the evaluation results in the performance-based research funding system (PRFS) as it is currently designed.

A starred quality level will therefore need to have the same value for all RUs evaluated and the assessment will base itself on the same set of indicators and information. For this purpose, the evaluation panels will perform a calibration exercise prior to the evaluation. During this exercise, each Subject Panel will decide on the interpretation to be given to certain key words in the assessment criteria in the context of their specific field, as well as the relevance of performance against certain sub-criteria, in the context of their field and for the different types of research organisations.

Sources of information for the evaluation

The expert panel assessment will be based on international bibliometric data, data included in the national RD&I system, and quantitative and qualitative data provided by the evaluated Research Units, including a self-assessment.

The participating Evaluated Units will provide evidence to the evaluation panel about the activity and achievements of their Research Unit(s) in their self-assessment report. They will do so by providing a concise picture of the Research Unit’s research environment, staff, funding, outputs and activities, including both facts and qualitative information as well as the results of their self-assessment. This includes a SWOT analysis that will give a perspective for the future.
This information will be complemented by a bibliometrics data report. This report, which will be delivered for each Research Unit, will contain also information of the positioning of the RU within its field of research in the Czech Republic.

The evaluation results

The outcomes of the evaluation will constitute quality information for R&D policy making at the national and funding bodies’ level as well as for R&D management in the single research organisations, institutes and university faculties. The evaluation results will give a view on the specific strengths and weaknesses of the different actors and will allow for the identification of the factors upon which action is needed in order to improve research performance, at the national as well as institutional level.

The panel evaluation will result in a Subject panel report that will include for each evaluated Research Unit the assigned quality level for each assessment criterion accompanied by an explanatory statement (for each criterion) and final conclusions and recommendations for future improvement.

The evaluation will result also in a set of analytical reports at the level of Evaluated Unit, field and disciplinary area. These reports will take the form of a conclusive panel-based aggregation of RU-level judgement to the higher levels.

There will be no right for appeal.

Costs of the evaluation

The cost and burden of the evaluation will be the minimum possible to deliver a robust and defensible process.

The evaluation management

The entities responsible for the governance and management of the National Evaluation of Research Organisations (NERO) implementation will consist of an Evaluation Management Board, acting as overall governance and supervisory body, and an Evaluation Management Team, responsible for the operational management of evaluation.

The tasks of the evaluation management structure, i.e. the Evaluation Management Team, are not limited to the management of a specific run of NERO. Instead, they should be seen in a broader and longer-term perspective. In fact, the implementation of NERO is part of an evaluation cycle. Especially because the evaluation results will inform the performance-based research-funding component of the institutional funding system, NERO needs to be considered as a policy intervention. As a consequence, to a certain extent the evaluation methodology will be ‘dynamic’, i.e. acting upon and reflecting changing policy needs. As for any other policy intervention, its effects also need to be monitored, both the intended and unintended ones, so that the methodology can be adjusted if needed in the next run of the evaluation.

The Evaluation Methodology defined specific rules governing conflicts of interest, against nepotism and ‘clientelism’ as well as auditing mechanisms and rules for punishing cases of fraud. Such punishment will be both public and severe.

The evaluation will be conducted in full transparency. Information on the evaluation criteria will be made public prior to the implementation of the evaluation.

All evaluation reports will become public when the evaluation process is finalised. This will contain the names of the Main panel and Subject panel members. The names of the referees will not be made public.
Table of Contents

1. Introduction
 1.1.1 The process for the Evaluation Methodology design 1
 1.1.2 The Evaluation Methodology 2
 1.1.3 Structure of the report 2

2. Background to the evaluation methodology 3
 2.1 The Evaluation Policy in the Czech Republic 3
 2.1.1 Historical context 3
 2.1.2 Recent developments 5
 2.2 The R&D system 5
 2.2.1 R&D Governance 5
 2.2.2 The R&D base 7
 2.2.3 Scientific focus of the research 10
 2.3 The policy objectives of this study 12

3. Concepts and core elements of evaluation in international practice 15
 3.1 The role of evaluation 15
 3.2 The scope of evaluation 19
 3.2.1 Evaluations at national versus institutional level 19
 3.2.2 Typologies of research organisations 20
 3.2.3 The use of thresholds 23
 3.3 The evaluation method 24
 3.3.1 Peer review 24
 3.3.2 The use of bibliometrics 25
 3.3.3 Informed peer review 27
 3.4 The structure and level of analysis 28
 3.4.1 The unit of evaluation 28
 3.4.2 The inclusion of individual staff 28
 3.5 The focus of evaluation: scientific disciplines 30
 3.5.1 Collaboration patterns 30
 3.5.2 Publication and citation practices 31
 3.5.3 The societal missions 34
 3.5.4 Implications for evaluation 36
 3.5.5 Handling inter-disciplinary research 37
 3.6 Indicators and assessment criteria 38
5.3 Risks and risk management
5.3.1 Integrity of the panel evaluation process 96
5.3.2 Audits and verifications 98
5.4 Scenarios for the implementation of the EM 98
5.4.1 Implementation of the evaluation in groups of RO-types or fields 98
5.4.2 Increase of the RO-type specific dimension 99

Appendix A - OECD field structure 101

Table of Exhibits

Exhibit 1 The RD&I governance system in the CR 6
Exhibit 2 Funding bodies allocating institutional funding in 2014 8
Exhibit 3 Research institutes and public HEI faculties registering scholarly outputs in 2008-2012 9
Exhibit 4 Number of researchers in the research performing sectors - 2011 9
Exhibit 5 Scholarly outputs in Disciplinary Areas and Fields in the Czech Republic, 2009-2013 10
Exhibit 6 Policy objectives of the evaluation methodology and funding principles 12
Exhibit 7 The difference in purpose and effects of ‘general’ evaluations and evaluations in PRFS 16
Exhibit 8 Main characteristics of national evaluation systems 18
Exhibit 9 Individual researchers included in evaluations - Australia, UK, Finland, New Zealand and Italy 29
Exhibit 10 Primary Form of Written Communications by Discipline Group 31
Exhibit 11 Scholarly publication patterns 32
Exhibit 12 Coverage in Scopus and Web of Science 34
Exhibit 13 Indicators used in European PRFS (2013) 39
Exhibit 14 Overview of indicator types and use 41
Exhibit 15 Input indicators 42
Exhibit 16 Indicators on research outputs 43
Exhibit 17 Systemic indicators 45
Exhibit 18 Process indicators 45
Exhibit 19 Impact indicators 46
Exhibit 20 Assessment criteria in the Standard Evaluation Protocol - Netherlands 47
Exhibit 21 Assessment criteria in the VQR 2004-2010 - Italy 47
Exhibit 22 Quality control measures in PRFS 48
Exhibit 23 Total costs and ‘efficiency’ of three international PRFS 50
Final report 1: The R&D Evaluation Methodology

Exhibit 24 The Research Unit as primary unit of evaluation 55
Exhibit 25 RO type categories – shares in overall number and institutional funding 57
Exhibit 26 Breakdown in RO categories of the RO and EvU research-active in 2009-2013 58
Exhibit 27 Effect of the threshold on EvU participation 59
Exhibit 28 Assessment criteria in response to the policy objectives 63
Exhibit 29 Assessment criteria and sub-criteria 63
Exhibit 30 Mix of qualitative and quantitative indicators informing the assessment criteria 71
Exhibit 31 Research outputs eligible for the research excellence and research output assessment criteria 73
Exhibit 32 List of bibliometric indicators 76
Exhibit 33 Organisation of the evaluation experts in Main and Subject panels 84
Exhibit 33 The evaluation cycle 90
Exhibit 34 Main tasks of the evaluation management team 91
Exhibit 35 Indicative time-line of the evaluation process 95

List of Abbreviations

ARC Australian Research Council
BOF Bijzonder Onderzoeks Fonds (Special Fund for Research, Belgium)
CNRS Centre national de la recherche scientifique (National Centre for Scientific Research, France)
CR Czech Republic
DG Directorate-General
EARTO European Association of Research and Technology Organisations
EC European Commission
EM Evaluation Methodology
ERA European Research Area
ERC European Research Council
EvU Evaluated Unit
FTE Full-time equivalent
GBER General Block Exemption Regulation
HEI(s) Higher Education Institute(s)
IBRO Industry and business Research Organisation
IPR Intellectual Property Right
Final report 1: The R&D Evaluation Methodology

IRU Interdisciplinary Research Unit
NatRes National resource
NERO National Evaluation of Research Organisations
NESTI OECD Working Party of National Experts on Science and Technology Indicators
NIS National Innovation System
NZ New Zealand
OECD Organisation for Economic Cooperation and Development
PRFS Performance-based Research Funding System
PRI Public research institutes
PSRO Public services Research Organisation
R&D Research and Development
RAE Research Assessment Exercise (UK)
RD&I Research, Development and Innovation
RD&I IS RD&I Information System
REF Research Excellence Framework (UK)
RI Research Infrastructure
RO(s) Research Organisation(s)
RQF Research Quality Framework (Australia)
RTO(s) Research and Technology Organisation(s)
RU Research Unit
ScRO Scientific Research Organisation
SSH Social Sciences & Humanities
TOR Terms of reference
UK United Kingdom
VQR Valutazione della Qualità della Ricerca (Evaluation of the Quality of Research, Italy)
WOS Web of Sciences
1. Introduction

This report is one of the three Final reports for the study developing a new evaluation methodology and funding principles for the R&D system in the Czech Republic.

This report describes the methodology that was designed during this study for the National Evaluation of Research Organisations (NERO) in the Czech Republic. It holds the final version of the Evaluation Methodology that was previously described in the First Interim Report(s).

The other two final reports are entitled: The Institutional Funding Principles and The Small Pilot Evaluation and the RD&I Information System as an information tool for evaluation.

This report builds on the joint efforts by a large study team, including:

- Jan Dvořák, Tomáš Chudlarský (Infoscience Praha)
- Gunnar Sivertsen, Liv Langfeldt, Kyrre Lekve (NIFU)
- Michal Pazour, Zdeněk Kučera, Tomáš Vondrák, Jiří Vaněček, Ondřej Pecha, Ondřej Pokorný, Vladislav Cadil, Tomáš Ratinger (Technology Centre ASCR)
- Erik Arnold, Tomas Åström, Oliver Cassagneau-Francis, Kristine Farla, Barbara Good, Tobias Fridholm, Elina Griniece Zsuzsa Javorka, Malin Jondell Assbring, Peter Kolarz, Bea Mahieu, Göran Melin, Anke Nooijen, Fritz Ohler, Martijn Poel, Xavier Potau, Caspar Roelofs, Tammy-Ann Sharp, Brigitte Tiefenthaler, Geert van der Veen, Frank Zuijdam (Technopolis Group)

The study team was supported by field experts (Christofer Edling, Milena Horvat, Ron Perrott, Roland Pochet, Naomi Segal, and Ken Thomson) and an Advisory Panel composed of Diana Hicks, Paul Hubbard, Keith Jeffery, and Gunnar Sivertsen.

1.1.1 The process for the Evaluation Methodology design

The Evaluation Methodology (EM) that we propose in this report is fruit of a design process that was spread throughout the entire duration of the study.

Reflecting the Terms of Reference (ToR), the study was structured in three phases: first we focused on drafting the Evaluation Methodology to then focus our attention on the funding principles. The last phase of the study was dedicated to the finalisation of both the Evaluation Methodology and the funding principles. The results of each of these phases were communicated by means of interim reports.

The design process included a broad consultation with the IPN project team responsible for this study as well as all actors in the RD&I system, two public conferences constituting platforms for an open discussion with the RD&I community, and the implementation of a small pilot evaluation exercise.

Actors in the Czech RD&I system were given the opportunity to provide their feedback to the draft version of the interim reports – both in written form and during the conferences, providing precious input for the finalisation of the Evaluation Methodology we propose.

The Small Pilot Evaluation, conducted in the months of November/December 2014, constituted an important tool for the testing of the processes that were defined for the implementation of the research assessment, as well as the adequacy and feasibility of the defined assessment criteria and indicators. The results of the pilot evaluation and the reflections on the ‘lessons learned’, based on the feedback from the evaluation panels and their secretariats as well as from the participating research organisations, are equally taken into account in this final version of the methodology for the National Evaluation of Research Organisations in the Czech Republic.
1.1.2 The Evaluation Methodology

The Evaluation Methodology (EM) that we propose in this report defines the key principles for the future evaluation methodology and sets its basic components.

A fundamental principle for any evaluation methodology is that it should reflect the specific policy objectives and needs. These policy objectives define the purpose and function of the evaluation, which constitutes a key factor in the choice for its core elements, i.e. the scope of the assessment, the assessment criteria and indicators, the methods used, and the depth and breadth of the evaluation exercise.

In its current version, the EM and its principles for implementation reflect the policy objectives and needs as defined in recent R&D policy documents in the Czech Republic. It also responds to the requests expressed in the ToR for this study.

- Reflecting the policy objectives, the current EM is centred on the assessment of the institutional conditions enabling the conduct of quality research (now and in the future), scientific research excellence, overall research performance, and the activities that constitute pathways to impact – on research and the society at large
- Reflecting the ToR for this study, the EM has a pronounced formative function, providing strategic information to actors at all levels in the R&D system, as well as informing the performance-based research funding system (PRFS). It is a national evaluation methodology, allowing for performance assessment of all types of research organisations (ROs) and disciplinary cultures, while taking into account their differences. It is set up so that total costs do not exceed 1% of public institutional support for R&D in the evaluated period

During the design process our ambition was to maintain an appropriate balance between the many objectives and dimensions that the evaluation methodology needed to cover, within the defined cost limits. Inevitably, this was a process of finding the appropriate compromises.

1.1.3 Structure of the report

This report is structured as follows:

First, we set the context for the Evaluation Methodology. The Evaluation Methodology takes into account the background and context of the R&D system in the Czech Republic, covered in Chapter 2, and builds on a thorough analysis of the concepts for evaluation in international practice, set out in Chapter 3.

In Chapter 4 we describe the Evaluation Methodology, its key principles and core elements, while we present the structures and processes for its implementation in Chapter 5.

Relevant background reports related to the Evaluation Methodology are:

- Background report 1: Evaluation systems in international practice
- Background report 2: Typology of Research Organisations and the Effects of the EM thresholds
- Background report 3: Bibliometrics on and for the Czech republic
- Background report 4: Detailed evaluation cost framework
- Background report 5: Evaluation Handbook
2. Background to the evaluation methodology

In this Chapter we describe the developments in the Evaluation Policy in the Czech Republic (Chapter 2.1), give a brief overview of the Czech R&D system (Chapter 2.2), and set the evaluation methodology within the R&D policy context (Chapter 2.3).

2.1 The Evaluation Policy in the Czech Republic

Currently, in the Czech Republic, there is a single Evaluation Framework for the evaluation of performance in the research organisations as well as efficiency in the design and implementation of competitive research funding programmes. The Evaluation Methodology focuses exclusively on research outputs and combines two functions: it is both a mechanism for evaluating research and for allocating institutional funding for R&D, with a direct, automatic link between the two. The evaluation results therefore directly drive the Performance-based Research Funding System (PRFS).

2.1.1 Historical context

The current evaluation framework in the Czech Republic has its roots in the National Policy on Research & Development (R&D) for the years 2004 – 2008, which included an attempt to improve the quality of the evaluation system. It said that a stronger ‘evaluation culture’ was needed and stressed the importance of evaluations as inputs to policy development and decision-making. Some of the conclusions were built into Government Resolution No. 644 on the evaluation of R&D and its results (June 2004). The objective of the Resolution was to tackle the perceived failure in evaluation quality in the R&D system. It set the basis for evaluating R&D institutions, programmes and final evaluations of projects, including the ‘research intentions’ through which institutional funding was at that time awarded.

The 2004 Evaluation Methodology (further: Metodika) introduced to the Czech Republic the concept of a metrics-based quantitative results evaluation, seen as a tool – and only one of the main criteria – to prove the quality of research performance. It also stressed the importance of respecting the differences between disciplines when evaluating research results.

A major shift occurred with the 2008 Reform of the RD&I System. The Metodika 2009, which implemented the principles of the 2008 Reform, marks the launch of an evaluation system that was profoundly different from the 2004 evaluation methodology. Fundamental changes, in the EM 2009 and its subsequent versions, were:

- A narrowing of the function of evaluation, abandoning the previous attempts to instil ‘evaluation culture’ and embed learning in the system and replacing them with the idea of evaluation as a component in a performance-based resource allocation system
- A progressive restriction of the scope of the evaluation guidelines: while the 2004 evaluation methodology covered all the different layers of the research

1 This section builds on three reports that were published as a result of the International Audit of the R&D&I System in the Czech Republic, i.e.Arnold, E. (2011), International Audit of the R&D&I System in the Czech Republic, Synthesis report, Technopolis Group; Arnold, E. et al. (2011), The Quality of Research, Institutional Funding & Research Evaluation in the Czech Republic and abroad, International Audit of R&D&I in the Czech Republic - Final Report - 3, Technopolis Group; Arnold, E., Mahieu, B., Horvath, A., (2011) R&D Governance in the Czech Republic, International Audit of R&D&I in the Czech Republic - Final Report - 2, Technopolis Group
system, the Metodika 2009 focused almost solely on the quantification of research outputs for the evaluation of research organisations and research programmes

• An increasing breadth of coverage of the Metodika: the Metodika 2009 established the use of the metrics-based evaluation of R&D results for institutional funding at the level of funding bodies. The Metodika 2010 enforced and expanded the use down to the level of research institutions

The 2011 International Audit of the RD&I System in the Czech Republic (further: Audit) strongly criticised the Metodika. The study recognised that the evaluation methodology was driven by ‘good ambitions’ in addressing the issue of low productivity in some research organisations and intended to improve the quality of research outputs.

However, it identified important flaws in the evaluation system from the perspective of the quality of the evaluations and the role of evaluation in the policy cycle. Weaknesses that were identified included:

• An exclusive focus on the immediate outputs of the research system rather than assessing (also) whether it produces the intended societal effects
• A reduction of the complexity of performance to an overly simple category of outputs
• A lack in consideration for disciplinary differences (both in types of outputs among disciplines and in the costs of producing them)
• All institutions are treated in the same way, regardless of their missions, by using output indicators that are in practice arbitrary
• The concept of the evaluation system as being intrinsically part of a policy cycle is not perceived. Policy requirements such as the national thematic priorities are not taken into account and there is little to no effort for an effective measurement of the extent at which policy interventions achieved the expected effects on S&T fields

Broadly, the Audit considered the need for the Czech RD&I system to build up an evaluation culture and for policy-makers and research organisations to come to see evaluation as a tool for learning and improving research.

The International Audit concluded:

“The Evaluation Methodology is not fit for purpose. It introduces structural and behavioural distortions and impedes many aspects of the NRIS’ development. The Evaluation Methodology should be replaced by a system of performance contracts that have both prospective and retrospective components, supported by a combination of objective indicators and international peer judgement.

The system of R&D evaluation in the Czech Republic more broadly focuses on counting outputs at the expense of understanding policy interventions and their impacts. It therefore provides information that is at best of limited relevance. Evaluation practice should be the subject of root and branch reform, refocusing on outcomes and impacts in addition to outputs and contributing to policy and programme development and planning.”

2.1.2 Recent developments

Following the International Audit, changes were made in the methodological approach to evaluation, leading to the Metodika 2013-2015. The most important changes consisted in the improvement of the research assessment method through the introduction of a panel review component, more precise definitions for the research outputs and restrictions in the eligible typologies to contrast gaming, and efforts to increase the trust of the research community in the fairness of the system.

While this was a positive development, it corrected only partially the methodological flaws as an evaluation system that the Audit identified: Metodika remained close to exclusively focused on research outputs.

Five years after the introduction of the Metodika 2009, the negative effects of the evaluation and funding system on the evaluation culture in the RD&I system, leading to a misconception of the role of evaluation, are increasingly apparent. These include:

- The number of “RIV points” attained, i.e. the points attributed to the different research outputs in the ‘evaluation’, are considered as an indication of research quality and a tool for rewarding/punishment throughout the entire R&D system, down to the level of the individual researcher
- The direct link between evaluation and funding heavily dominates the evaluation culture and has affected profoundly the Czech R&D evaluation and policymaking system
- The discourse on evaluation is detached from any discourse on policy and strategy related to the national R&D system

2.2 The R&D system

2.2.1 R&D Governance

In recent years, the Czech Republic (CR) set the fundaments for a radical change in its R&D&I governance structure. These were based on the 2008 Reform and the subsequent National Research, Development and Innovation (further R&D&I) Policy document (2009) for the years 2009 – 2015 and other necessary legislative interventions. The current RD&I governance structure in the CR can be depicted as in Exhibit 1, below.

At the first level in the RD&I Governance system, the **RD&I Council** (further: Council) acts as an advisory body to the Government of the Czech Republic. It has 16 members (not including the Chairman) and is governed by a Board. The Deputy Prime Minister for Research acts as the Chairman of the Council, thus enforcing its legitimacy. Members of the Council are members of the different RD&I communities and are nominated by the Government on proposal of the Chairman, with a mandate of 4 years (once renewable).

The Council covers a broad range of tasks in the national governance of the RD&I system, including the definition of overall directions and priorities across the National Research and Innovation System, long-term strategy development, the preparation of a proposal of a very detailed budget for research and development, monitoring and evaluation. It is supported by 3 disciplinary advisory Expert Committees and 2 Advisory Commissions, i.e. the Commission on Bioethics and the Commission for Evaluation.

A set of ministries, the Academy of Sciences, and 3 agencies, responsible for the implementation of the RD&I policy, constitute the second ‘intermediary’ level.

The involvement of the Government and Parliament in the current RD&I System is considerable. Two of the agencies have a unique status; their governing bodies are nominated by the Government – upon proposal by the Council. The Government also
nominates – or removes - the members of the Council and the Secretariat of the Council is part of the Office of the Government.

Exhibit 1 The RD&I governance system in the CR

The National RD&I Policy 2009-2015, which implemented the 2008 Reform of the RD&I system, restructured the RD&I governance system. The number of Ministries and other public administration bodies with competences for R&D&I funding was reduced, limiting the national R&D budget chapters from 22 to 11. In total, 7 Ministries hold management responsibilities for national public R&D&I support: the Ministry of Defence, the Ministry of Health, the Ministry of Agriculture, the Ministry for Education, the Ministry for Industry and Trade, the Ministry of Culture, and the Ministry of Interior.

All of these Ministries manage the national institutional funding for the research organisations – public or private non-profit – in their area of competence; most of them also develop and manage competitive R&D programmes. Exception is the Ministry of Industry that officially does not have the responsibility for ‘targeted’ funding programmes, even though it currently runs such a programme that will last until 2017. None of these Ministries conducts evaluations for the assessment of its research organisations.

Source: Technopolis, 2014
2.2.2 The R&D base

As shown in Exhibit 1, above, the research community in the Czech Republic is composed of researchers employed in universities, public research institutes (including those ‘grouped’ in the Academy of Sciences and ‘sectoral’ public research institutes), private research institutions, and industry.

Key actors in public research are the public universities and the research institutes of the Academy of Sciences.

- In the Czech Republic there are 26 public universities, 2 state universities (the Policy Academy and the University of Defence), and 45 private higher education institutions
- The Academy of Sciences has historically a special position in the Czech R&D system. It is an “organisational body of the Czech Republic” and its activities are financed directly by the state budget (it has its own budget chapter). It holds responsibility for the allocation of institutional funding to its 54 institutes. In this context, it organises internal institutional evaluations
- Sectoral public research institutes are public research institutes that were previously governed by specific Ministries (such as the Ministry of Agriculture or Transport) and gained the status of public research institutes in 2007. In several cases, these institutes have public administration as their target users of their products/services.
- Private research institutes include a broad range of private enterprises offering R&D services. These include industry-oriented research institutions that took up the role of public RTOs under communist times and survived the privatisation wave in the beginning of the 1990s

Only those institutions that are recognised as research organisations (ROs) are entitled to public institutional support.

Research organisations are defined in the Act No 211/2009 Coll. (a complete amendment of the Act No. 130/2002 Coll.) on the support of research, experimental development and innovation. The CR adopted the definition provided by the 2006 “Community framework for state aid for research, development and innovation”, which states:

“Research organisation’ means an entity, such as university or research institute, irrespective of its legal status (organised under public or private law) or way of financing, whose primary goal is to conduct fundamental research, industrial research or experimental development and to disseminate their results by way of teaching, publication or technology transfer; all profits are reinvested in these activities, the dissemination of their results or teaching; undertakings that can exert influence upon such an entity, in the quality of, for example, shareholders or members, shall enjoy no preferential access to the research capacities of such an entity or to the research results generated by it.”

Since July 2014, the new EU Commission Regulation (GBER) is in force, which uses a slightly different definition of RO, namely:

“Research and knowledge-dissemination organisation’ means an entity (such as universities or research institutes, technology transfer agencies, innovation intermediaries, research-oriented physical or virtual collaborative entities), irrespective of its legal status (organised under public or private law) or way of financing, whose primary goal is to independently conduct fundamental research, industrial research or experimental development or to widely disseminate the results of such activities by way of teaching, publication or knowledge transfer.”
A technical amendment to the Czech Act is in the process of approval, which will transpose all changes in the Community Framework into the Czech legislation (including the definition of ROs). According to the RD&I Information System (IS), there were 219 registered ROs in 2014. Public research organisations accounted for the majority of the registered research organisations in 2014 (163 on a total of 219). The 56 non-public research organisations have different legal status, including:

- ‘Beneficial organisations’ (various private agencies, think tanks, etc.) (12)
- Registered legal bodies (38)
- Other legal bodies (1), and
- Professional association/non-profit organisations (5).

Close to 20% of the 219 registered ROs (43) gained their status of research organisation after 2011. The new research organisations are mostly state agencies (museums, hospitals, etc.), registered legal bodies (private universities and private companies) and beneficial organisations (various private agencies, think tanks, etc.). However, only 164 of these research organisations actually received institutional funding in 2014. Exhibit 2, below, shows the ministries responsible for the allocation of institutional funding (i.e. the ‘funding bodies’) and the number of ROs in their sphere of competence for the funding in 2014.

Exhibit 2 Funding bodies allocating institutional funding in 2014

<table>
<thead>
<tr>
<th>Funding body</th>
<th>Number of RO receiving institutional funding (2014)</th>
<th>% of the total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academy of Sciences CR</td>
<td>54</td>
<td>33%</td>
</tr>
<tr>
<td>MEYS (Ministry of Education)</td>
<td>41</td>
<td>25%</td>
</tr>
<tr>
<td>MoA (Ministry of Agriculture)</td>
<td>20</td>
<td>12%</td>
</tr>
<tr>
<td>MoH (Ministry of Health)</td>
<td>15</td>
<td>9%</td>
</tr>
<tr>
<td>MoC (Ministry of Culture)</td>
<td>13</td>
<td>8%</td>
</tr>
<tr>
<td>MIT (Ministry of Industry & Trade)</td>
<td>10</td>
<td>6%</td>
</tr>
<tr>
<td>MoI (Ministry of Interior)</td>
<td>8</td>
<td>5%</td>
</tr>
<tr>
<td>MoD (Ministry of Defence)</td>
<td>3</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>164</td>
<td>100%</td>
</tr>
</tbody>
</table>

The RD&I IS also indicates that out of these 219 research organisations, 200 ROs registered at least one scholarly research output in the period 2008-2012 (Exhibit 3, below). Few of the private universities published scholarly outputs in that time period, the research hospitals were particularly ‘active’, and close to 30 public research organisations - beyond the Academy and the public universities – published scholarly outputs.

3 We cover the process for the recognition of Research Organisations further in the report Typology of Research Organisations and the Effects of the EM thresholds (Background report 2)

4 The four types of publications: J - Journal Article, B - Book (Monograph), C - Book Chapter, D - Conference Paper
Exhibit 3 Research institutes and public HEI faculties registering scholarly outputs in 2008-2012

<table>
<thead>
<tr>
<th>Nr of Research Organisations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCR</td>
</tr>
<tr>
<td>HEI – public</td>
</tr>
<tr>
<td>HEI – private</td>
</tr>
<tr>
<td>(University) Hospital</td>
</tr>
<tr>
<td>Ministry Interior/Defence (HEI & institutes)</td>
</tr>
<tr>
<td>Other institutes/Centre</td>
</tr>
<tr>
<td>Government Agency/Museum/Library</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Source: Public data of the Czech RD&I Information System (www.isvav.cz), Technopolis analysis

In terms of size of the ROs, the latest available data from the Czech Statistical Office illustrate the growing importance of the Higher Education sector in research. In 2011, this sector accounted for approximately 30% of the total FTE researchers in the country (Exhibit 4). Comparable data on FTE researchers at the level of HEI faculty are not available.

Exhibit 4 Number of researchers in the research performing sectors - 2011

<table>
<thead>
<tr>
<th>Sector of performance</th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>% from total</td>
<td>Number</td>
</tr>
<tr>
<td>Government sector</td>
<td>8,220</td>
<td>61.6%</td>
<td>3,132</td>
</tr>
<tr>
<td>Registered number of employees at 31 December (HC)</td>
<td>6,235</td>
<td>63.6%</td>
<td>2,272</td>
</tr>
<tr>
<td>Higher Education sector</td>
<td>20,732</td>
<td>65.3%</td>
<td>7,184</td>
</tr>
<tr>
<td>Registered number of employees at 31 December (HC)</td>
<td>10,289</td>
<td>67.9%</td>
<td>3,303</td>
</tr>
<tr>
<td>Business enterprise sector</td>
<td>16,698</td>
<td>84.8%</td>
<td>2,541</td>
</tr>
<tr>
<td>Registered number of employees at 31 December (HC)</td>
<td>13,958</td>
<td>85.3%</td>
<td>2,045</td>
</tr>
<tr>
<td>Private Non-Profit sector</td>
<td>251</td>
<td>68.5%</td>
<td>79</td>
</tr>
<tr>
<td>Registered number of employees at 31 December (HC)</td>
<td>199</td>
<td>61.6%</td>
<td>77</td>
</tr>
<tr>
<td>CZ Total</td>
<td>45,902</td>
<td>71.8%</td>
<td>12,936</td>
</tr>
<tr>
<td>Registered number of employees at 31 December (HC)</td>
<td>30,682</td>
<td>74.9%</td>
<td>7,696</td>
</tr>
</tbody>
</table>

Source: Czech Statistical Office, 2014
2.2.3 Scientific focus of the research

We analysed the publication profile of the Czech Republic using as framework the field classification defined by the OECD (see Appendix A to this report). The use of this classification system allows for the international comparability of data on research activities in specific fields and their outcomes and will therefore increase the capability for benchmarking and use of international datasets.

Exhibit 5, below, shows the total number of scholarly outputs\(^5\) registered in the RD&I IS against specific fields during the period 2009-2013. While the totals at disciplinary level need to be considered with care (publications could be registered against multiple fields), the data show the following publication profile of Czech research:

- The Czech Republic is particularly research- and publication-active in the Natural Sciences, more specifically in the fields of physical sciences and astronomy, and the biological sciences
- A second area of specialisation in terms of size in activity is Engineering and Technology, in particular electrical / electronic / information engineering
- The disciplinary areas Medical & health sciences and Social sciences. A high level of publication production is to be noted in particular in the field of clinical medicine

The research profile emerging from this analysis of data in the RD&I IS is broadly in line with the outcomes of the bibliometric analysis based on data in the Web of Sciences (WOS). We report on this analysis in the report *Bibliometrics on and for the Czech Republic* (Background report 3).

In that analysis we also perform an international comparison of the bibliometric data for the Czech Republic. We observe that the Czech Republic shares its focus on Natural sciences, Engineering and Technology with its neighboring countries Germany, Poland and Slovakia. However, there is a potential for increased citation impact in these two major areas relative to the largest and most influential countries.

We also observe that there is less emphasis in the research profile on Medical and Health Sciences than can be seen in the EU in general and in the United States. While the Medical and Health sciences stand out with an especially high average citation impact for the Czech Republic, the data suggest that this high impact rate is due to a few very highly cited articles from the Czech Republic in this area each year.

Exhibit 5 Scholarly outputs in Disciplinary Areas and Fields in the Czech Republic, 2009-2013

<table>
<thead>
<tr>
<th>1. Natural Sciences</th>
<th>Scholarly outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>101 Mathematics</td>
<td>8,441</td>
</tr>
<tr>
<td>102 Computer and information sciences</td>
<td>9,441</td>
</tr>
<tr>
<td>103 Physical sciences and astronomy</td>
<td>19,081</td>
</tr>
<tr>
<td>104 Chemical sciences</td>
<td>13,280</td>
</tr>
<tr>
<td>105 Earth and related environmental sciences</td>
<td>15,070</td>
</tr>
<tr>
<td>106 Biological sciences</td>
<td>20,740</td>
</tr>
</tbody>
</table>

\(^5\) The four types of publications: J - Journal Article, B - Book (Monograph), C - Book Chapter, D - Conference Paper
2. Engineering and Technology

<table>
<thead>
<tr>
<th>Category</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>201 Civil engineering</td>
<td>11,103</td>
</tr>
<tr>
<td>202 Electrical engineering, electronic engineering, information engineering</td>
<td>14,646</td>
</tr>
<tr>
<td>203 Mechanical engineering</td>
<td>4,222</td>
</tr>
<tr>
<td>204 Chemical engineering</td>
<td>1,762</td>
</tr>
<tr>
<td>205 Materials engineering</td>
<td>10,578</td>
</tr>
<tr>
<td>206 Medical engineering</td>
<td>267</td>
</tr>
<tr>
<td>207 Environmental engineering</td>
<td>3,451</td>
</tr>
<tr>
<td>209 Industrial Biotechnology</td>
<td>839</td>
</tr>
<tr>
<td>211 Other engineering and technologies</td>
<td>5,891</td>
</tr>
</tbody>
</table>

3. Medical and Health Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>301 Basic medicine</td>
<td>4,147</td>
</tr>
<tr>
<td>302 Clinical medicine</td>
<td>32,338</td>
</tr>
<tr>
<td>303 Health sciences</td>
<td>4,231</td>
</tr>
<tr>
<td>305 Other medical sciences</td>
<td>4,160</td>
</tr>
</tbody>
</table>

4. Biological and Agricultural Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>401 Agriculture, forestry, and fisheries</td>
<td>8,133</td>
</tr>
<tr>
<td>402 Animal and dairy science</td>
<td>1,875</td>
</tr>
<tr>
<td>403 Veterinary science</td>
<td>1,599</td>
</tr>
<tr>
<td>405 Other agricultural sciences</td>
<td>522</td>
</tr>
</tbody>
</table>

5. Social Sciences

<table>
<thead>
<tr>
<th>Category</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>501 Psychology</td>
<td>2,448</td>
</tr>
<tr>
<td>502 Economics and business</td>
<td>18,593</td>
</tr>
<tr>
<td>503 Educational sciences</td>
<td>10,697</td>
</tr>
<tr>
<td>504 Sociology</td>
<td>2,520</td>
</tr>
<tr>
<td>505 Law</td>
<td>6,968</td>
</tr>
<tr>
<td>506 Political Science</td>
<td>2,710</td>
</tr>
<tr>
<td>507 Social and economic geography</td>
<td>614</td>
</tr>
<tr>
<td>508 Media and communications</td>
<td>409</td>
</tr>
<tr>
<td>509 Other social sciences</td>
<td>1,213</td>
</tr>
</tbody>
</table>

6. Humanities

<table>
<thead>
<tr>
<th>Category</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>601 History and archaeology</td>
<td>13,392</td>
</tr>
<tr>
<td>602 Languages and literature</td>
<td>10,917</td>
</tr>
<tr>
<td>603 Philosophy, ethics and religion</td>
<td>5,276</td>
</tr>
<tr>
<td>604 Art (arts, history of arts, performing arts, music)</td>
<td>6,911</td>
</tr>
</tbody>
</table>

Source: RD&I IS, 2014

Experience with the RD&I IS shows that we can estimate the annual total output of scholarly research outputs to be 22,000.
2.3 The policy objectives of this study

This study is part of the IPN project 'Effective system for the evaluation and funding of RD&I', which has as objective:

“To propose a performance evaluation system as a whole and funding mechanisms for the entire system so that public support would contribute to an increase in the excellence of Czech RD&I, act as an incentive for all players, and support the growth of competitiveness of the Czech Republic.”

In relation to the funding principles, in the online description of the project the IPN team indicates the strategic objective “to suggest a motivating funding system for RD&I with emphasis on excellence and medium-term planning.”

The project also set the policy context for its activities: in the project progress report of August 2013 it stated,

“The IPN project is based on the objectives and measures of the strategic documents of the Government (the Reform of RD&I, National RD&I policy for the years 2009 - 2015, International Competitiveness Strategy for the period 2012-2020, National Innovation Strategy), the recommendations of the IPN International audit, the Long-term principles of evaluation and funding approved by the RD&I Council, and good international practice.

An analysis of the currently valid strategic policy documents in the Czech Republic allowed us to identify the key policy objectives of the evaluation methodology and funding principles, summarised in Exhibit 6, below.

Exhibit 6 Policy objectives of the evaluation methodology and funding principles

<table>
<thead>
<tr>
<th>Objective category</th>
<th>Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D capacity</td>
<td>To improve research and development management, at all levels</td>
</tr>
<tr>
<td></td>
<td>To improve human resource development, reflecting the needs of the knowledge economy of the CR</td>
</tr>
<tr>
<td></td>
<td>To strengthen cooperation between the RD&I actors at the national level, i.e. academic research, universities, applied research and the application sphere</td>
</tr>
<tr>
<td></td>
<td>To strengthen international cooperation</td>
</tr>
<tr>
<td>Excellence in R&D</td>
<td>To motivate research organisations (ROs) to excellence</td>
</tr>
<tr>
<td>Societal relevance</td>
<td>To motivate ROs for collaboration with industry</td>
</tr>
<tr>
<td></td>
<td>To motivate ROs for the transfer of knowledge to practice</td>
</tr>
<tr>
<td></td>
<td>To stimulate ROs to research corresponding to the needs of society and the business sector</td>
</tr>
</tbody>
</table>

The National RD&I policy 2010-2015 also specified: “The new EM will take into account differences among different types of ROs and research fields/groups of research fields”.

Based on the available documents and discussions, our reflections and conclusions on the policy objectives for our study, and in particular for the design of the Evaluation Methodology (EM) are:

- A first requirement is that the assessment informing the PRFS is trusted by the RD&I community. History suggests that this may be hard in the Czech Republic; the key elements needed are transparency and the use of disinterested peer reviewers.

- The current system through which ROs are officially recognised as research performing and therefore entitled to some level of institutional funding is seen as undemanding and leads to the registration of quite a large number of small (arguably, under-critical) research entities. It is not the task of an evaluation methodology to take (implicit) policy decisions from this perspective.

- A requirement is that the system should provide institutional research funding for all parts of the RD&I system that do research and are officially recognised as research organisations. Without this, the overhead and infrastructural needs of researchers will not be met and it will in practice be hard to sustain research. In the former British terminology, this funding was described as enabling ROs to provide a ‘well-found laboratory’, in which research can be undertaken using external or ‘targeted’ funding. Clearly, there has to be a mechanism that allocates such funding at any point in the system where it is agreed that research may be done. Inherently, some of this funding has to be provided ahead of research being done, so to build capacity it has to be allocated prospectively. This can be done through performance contracts. Once research capacity is in place, of course, its effectiveness can be tested using output and performance measures.

- At the same time as building and sustaining research capacity right across the RD&I system, there is a desire to identify areas of research excellence and to concentrate resources on these, building up capacity in areas of particular research strength. This implies an additional excellence incentive that redistributes some institutional funding, perhaps in the non-linear style of the UK RAE/REF.

- Research is inherently a rather long-term activity, so there is a particular need for the institutional funding system to provide a degree of stability and freedom to make strategic investments (a) through the mechanism of performance contracts and (b) by damping excessive movements in institutional funding between funding periods. This latter element has to be built into the structure of the funding model: what proportion of institutional funding should be contestable in any one funding round?

- Increasing the quality, relevance, productivity and internationalisation of Czech RDI are goals across the whole system. In effect, they are extensions of the general capacity building goal, so they can be encouraged through the use of competitive incentives (in practice, using the metrics module of the assessment to trigger the peers).

- The desire to introduce a formative, advice-giving element into the assessment methodology by looking at the health of a selected number of research organisations or fields. The intention is to confine this component to a small number of leading organisations. In the absence of other criteria, cost may need to be a factor in deciding how and how many ROs and fields to involve in this exercise.

- The final goal of the EM is to provide information for policymakers, which can be achieved through additional analysis of the information the evaluation collects.
Final report 1: The R&D Evaluation Methodology

Our conclusions specifically in relation to the role and function of the EM are

- The EM is expected to assess performance but is also conceived as a tool to steer the behaviour of the research actors and inform institutional funding

- The EM has a pronounced formative function. It is expected to act as a source of information for strategic management of RD&I - at the level of government, support providers, programmes, and research organisations

- The EM will include all research organisations in the Czech Republic of a minimal size that are officially recognised as such

- The EM will take into account the differences among types of ROs and disciplinary cultures
3. Concepts and core elements of evaluation in international practice

In this chapter, we set the context of the Evaluation Methodology.

We reflect on the role of evaluation (Section 3.1) and then describe international practice in relation to the core elements that influence the design of any evaluation methodology, i.e. the scope of evaluation (Section 3.2), the evaluation method (Section 3.3), the evaluation structure and level of analysis (Section 3.4), the focus of evaluation (Section 3.5), and the indicators and assessment criteria (Section 3.6). Finally, we cover the risks that are associated in particular to the use of the evaluation results, and describe the measures that are typically taken to mitigate them (Section 3.6.6).

The comparative analyses of international practice in this chapter are based on the analysis of international practice in 10 countries performed in the context of this study. Readers interested in these analyses are referred to the report Evaluation systems in international practice (Background report 1).

3.1 The role of evaluation

The European Commission defines evaluation as “a judgment of interventions according to their results, impacts and needs they aim to satisfy.” It highlights that evaluation is “a process that culminates in a judgment (or assessment) of an intervention” and indicates as main purposes

- To contribute to the design of interventions, including providing input for setting political priorities
- To assist in an efficient allocation of resources
- To improve the quality of the intervention
- To report on the achievements of the intervention (i.e. accountability)

The function and purpose of the evaluation is a key element that influences the choice for its core elements, i.e. the scope of the assessment (institutions, individual researchers etc), the assessment criteria and indicators, the methods used (peer reviews, metrics, etc), and the depth and breadth of the evaluation exercise.

In international practice, evaluation has increasingly become an integral part of the policy cycle. Depending on the policy needs, evaluation is expected to foster learning and improvement as well as to ensure accountability. It is expected to provide information to help design better policies and/or to assess performance in order to legitimise past initiatives. In most cases, evaluations therefore have both a summative and a formative function: they assess past performance (the summative function), analyse the factors that facilitated or hindered the achievement of the policy intervention objectives, and recommend changes to the intervention or new interventions (the formative function).

The term “policy cycle” does not refer only to national R&D policies. In fact, the increased institutional autonomy of research organisations in the new public management model, distributing the responsibility for research performance over the various levels of the research system, led to an expansion of the scope and use of evaluation. Actors involved in the development of information for evaluation and interested in the use of its outcomes now span over all levels of the research system,

7 http://ec.europa.eu/dgs/internal_market/evaluation/evaluation/index_en.htm
from policy makers to the researchers themselves. This trend has led to the creation of a system of distributed intelligence; it also implied a diversification of the expectations and needs for evaluation.\footnote{Mahieu, B., Arnold, E., Kolarz, P., (2014) \textit{Measuring scientific performance for improved policy making}, Technopolis Group, Report for the European Parliament -STOA}

In relation to purpose, a major distinction needs to be made between evaluations that have as only purpose to assess research performance, and evaluation systems that are intended (also) to inform a performance-based research funding system (PRFS).

- Assessment systems, whose results do not directly feed into the allocation of institutional funding, have a pronounced ‘formative’ dimension in the sense that they provide research-performing organisations with feedback that they can use to improve performance while also providing research policymakers with strategic intelligence about the national research-performing system.

- Evaluations informing PRFS have a pronounced summative function. Steering research behaviour is a key function of a PRFS and in practice PRFS have different objectives, depending on the national context and policy strategies.

The different purposes of these evaluation exercises and their potential effects define methodological choices in particular in relation to the indicators to be used, and the processes for the design of the methodology as such. We summarise these differences in Exhibit 7.

\begin{table}
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{‘General’ evaluation} & \textbf{Evaluation in a PRFS} \\
\hline
\textbf{Informs} policy making on the failures in the system and \textbf{recommends} possible policy interventions & Is part of a \textbf{policy intervention}: it acts upon previously identified failures and steers research behaviour to tackle these by providing incentives \\
\hline
Has no effects directly linked to the evaluation & Is \textbf{intended} to create effects \\
\hline
Has no consequences of gaming or unintended effects & Has \textbf{inevitable} consequences of gaming and may lead to unintended effects \\
\hline
Gives \textbf{information} on the positioning of the evaluated objects in the national/international context & Sets the evaluated objects in \textbf{competition} to each other \\
\hline
\end{tabular}
\end{table}

Exhibit 7 The difference in purpose and effects of ‘general’ evaluations and evaluations in PRFS

In the course of this study we analysed the national evaluation system in the 5 ‘comparator’ countries that were selected for this study (Austria, the Netherlands, Norway, Sweden, UK). We also looked into the specific aspects of the practice in 5 more countries: Australia, Belgium/the Flanders, Finland, Italy and New Zealand (see the report \textit{Evaluation systems in international practice - Background report 1}).
Exhibit 8, below, categorises these national evaluation systems in terms of their **purpose** (to assess research performance or to guide institutional funding or both), and their **function** (formative or summative or both). It highlights the strong variety in the evaluation systems, determined by the specific policy needs in the national R&D context as well as the background of the R&D governance system they are part of.

- Austria and the Netherlands are examples of countries where research assessment is performed with no explicit link to institutional funding. In both countries, the key focus of the evaluations is on informing institutional R&D management.

- Norway and Finland are examples of purely indicator-based PRFS (not only based on bibliometrics). However, they are complemented by a broad range of other national or institutional evaluations, providing the ‘formative’ information needed. To be noted is also that the PRFS drives only a small part of the institutional funding.

- Belgium/the Flanders distributes the BOF fund for bottom-up basic research by means of a formula predominantly based on bibliometrics (the BOF key). This fund is additional to institutional funding and linked to a light-touch performance agreement. Since 2008 the BOF key is used also for the formula component of the universities' institutional funding. In 2011, it drove about 15% of the universities' institutional funding.

- In 2003 and 2011, Italy has run an evaluation exercise similar to the UK in terms of size and depth. Both Australia and Italy make a selective use of bibliometrics instead of the panel system, i.e. bibliometrics for the hard sciences and peer review for the others.

- Sweden is designing a new PRFS system, with the ambition to use bibliometrics only to inform the panels.

- The UK and New Zealand are similar in that they both use firmly peer review based evaluation methodologies. A distinction is that the UK REF focuses on research excellence, the New Zealand RAE on research quality.
Exhibit 8 Main characteristics of national evaluation systems

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance assessment</td>
<td>X</td>
</tr>
<tr>
<td>Inform funding</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Main function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formative</td>
<td>X</td>
</tr>
<tr>
<td>Summative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formative function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>National R&D governance</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Institutional R&D management</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Summative function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>R&D quality</td>
<td>X</td>
</tr>
<tr>
<td>R&D capacity building</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Research excellence</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Societal relevance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

R&D Evaluation Methodology and Funding Principles
3.2 The scope of evaluation

One of the first steps in any evaluation methodology design is to identify and focus the scope of the evaluation, i.e. the object of evaluation and the actors it involves.

In the sections below, we first consider the distinction between evaluations at national and institutional level, their use of methods and focus of the evaluation results that can be expected (Section 3.2.1). We then describe the efforts made in international practice for the definition of research organisation typologies (Section 3.2.2) and finally cover a minor but nevertheless important element for evaluation design, i.e. the use of thresholds for participation in evaluations (Section 3.2.3).

3.2.1 Evaluations at national versus institutional level

A primary element for decision-making in evaluation design that is of particular relevance for this study is whether the evaluation should assess performance at the institutional or national level. This guides the choice of methods and indicators - depending on goals, objectives and therefore needs, as well as the focus and depth of the analysis on specific topics.

In an increasing number of countries, evaluations at the national level include also information on the performance of research institutions and their management. However, the depth of the analysis at institutional level is more limited than in evaluations conducted at the institutional level, and the focus of the assessment is determined by the needs for strategic information at the national level as well as the purpose of the evaluation, e.g. to inform a performance-based research funding system (PRFS).

• **Evaluations at the institutional level** typically have the goal to help the universities' and research institutions' management understand their strengths and weaknesses and measure their research competitiveness, at an aggregate level and the level of their departments and research groups. The focus can be on internal quality assessment, evaluation of HR management processes, evaluation of internal research projects, or the identification of excellent research groups, depending on the needs. Results of these analyses feed into institutional strategy making (and eventually internal fund allocations) and help the institutions in their monitoring and reporting on outputs and impacts. Institutions also use this information for publicity purposes, i.e. to help student and academic recruitment, aid research partnerships (with private enterprises or other research institutions), and initiate or sustain investments. From a methodological perspective, these evaluations typically involve (informed) peer reviews with on-site visits.

• **Evaluations at the national level** can have two functions or a combination of the two: a) the collection of information for the comparison and benchmarking of the national performance at an international level, and b) the collection of strategic information for the definition and monitoring of research policy strategies and interventions. Evaluations focusing on the latter can be at institutional, thematic, or disciplinary level, depending on the objective. The evaluations conducted in Norway are an example of the latter (see the Country Analyses Background Report). Methods used are metrics and bibliometrics, and peer review or a combination of the two. Seeing the scale of the exercise, peer review rarely includes on-site visits (see also Section 3.3.1, below).
3.2.2 Typologies of research organisations

Research organisations are an obvious scope for research performance assessments. In the context of this study, the identification of different typologies of research organisations is of particular relevance. This is linked to both the purpose of the evaluation and its objectives, one of which is to take account of the differences among research organisations in terms of their 'mission in society' (see Section 2.3, above).

From a methodological perspective, handling the difference in missions of the evaluated objects for the assessment of performance is a common feature of the evaluation practice. It is a common request in evaluations of policy initiatives to take account of the roles and missions of the different actors involved. It is common practice in the context of programme evaluations; also in disciplinary evaluations such as the ones implemented in Norway, different actors in the system are covered with due consideration for their positioning in the National Innovation System (NIS). In all of these cases, the organisations are assessed in relation to their function in the R&D system and/or the NIS, and their performance is measured against their related objectives and expected impacts – be they explicitly stated or not.

The issue becomes more radical for the PRFS, i.e. the institutional funding allocation. To the best of our knowledge, there is no PRFS that defines performance criteria for a broad range of actors. The typical approach is that separate budgets are established for the different categories of organisations and different criteria are defined for the formula, depending on their missions. An example is again Norway, where the institutional funding of three different types of organizations, higher education institutions, research institutes (mainly RTOs and public service labs), and research hospitals, is driven through three different PRFS with different funding principles (see the Country Analyses background report).

The rationale lies in the very nature of PRFS, i.e. its function of supporting the particular aims of the research organisations in question. Different actions may be required for different actors. Even if the same assessment criteria can be applied, the weights of the different criteria should differ, reflecting the functions in the R&D system of the different actors. We cover this topic further in the Final report 2 – The Institutional Funding Principles.

In the official statistics, research-performing organisations are grouped into three main categories: Higher Education Institutes (HEIs), Public Research Institutes (constituting the 'government' sector), and private research organisations. This categorisation is based on the organisations’ legal status.

Such categorisation is of little use when considering the societal mission of research of the non-university research organisations. A recent OECD study highlighted the broad variety in activities and missions of these research organisations, ranging from institutes performing 'blue sky' science to institutes with a more short-term market-oriented research and those providing access to knowledge to industry, government, and other societal actors. The 2011 OECD report also shows that the distinction public/private research institutes, based on the legal status, is more often due to historical developments in the specific countries rather than indicating proper business models. Non-university research organisations may have different legal forms at different times and places. Some are foundations; others are limited liability companies that do not aim to distribute profits to shareholders. Others are

* OECD (2011), Public Research Institutions – Mapping Sector Trends
associations or even state agencies. In some systems the institutes have changed their legal form without changing their social and economic function.

The picture that emerges from the 2011 OECD report very much reflects the one that can be seen also in relation to the Czech R&D base, as described in Section 2.2.2, above.

Another distinction among research organisations that is typically made is based on the type of research that the research organisations conduct, i.e. basic research, applied research or development. In this context, the EC Expert Group10 warns against simplification of a more complex discourse:

“The growing complexity of knowledge and society has corresponded with blurring boundaries between vocational and classical higher education institutions, and between research and development. Simplistic distinctions between basic and applied research have been replaced by greater emphasis on strategic, regional and/or field specialisation. This diversity of research mission is reflected in the wide range of research outputs and outlets mapped across the full spectrum from discovery to knowledge transfer to innovation.”

In other words, categorisations of research organisations along the spectrum of basic research to experimental development cannot properly reflect a situation where many research organisations conduct a mix of research typologies. In this context, Czech readers will remember the change that has taken place in their research system over the last decades, with an increasing role of universities in the conduct of (also) basic research.11

A third criterion for categorisation is the function of the research organisation in the National Innovation System (NIS). Several studies12 have taken this approach. Also the OECD and its Working Party of National Experts on Science and Technology Indicators (NESTI) is looking into the feasibility of using this approach for future statistical purposes, in order better to capture the contributions made by non-university research organisations to developments in research and innovation. The 2011 OECD report on Public Research Institutes is to be placed in the context of this work.

In summary, non-university research organisations typically are categorised into three main typologies: Scientific Research Institutes, Research and Technology Organisations (RTOs), and Government laboratories.

Scientific research institutes are research organisations such as the Max Planck institutes in Germany, CNRS in France or the institutes of the national academies of science in various of the new member states. Historically, some of them have their origins in Research Councils or Academies of Science, which were simultaneously research-funding and research-performing organisations. They largely do the same kind of research as universities and correspondingly get a high proportion of their

10 Expert Group on Assessment of University-Based Research (2010), Assessing Europe’s University-Based Research, European Commission, DG Research

11 Arnold, E. (2011), International Audit of the R&D&I System in the Czech Republic, Synthesis report, Technopolis Group

12 Examples are the studies that constituted the main reference for this section, i.e.: Tomas Åström et al, International Comparison of Five Institute Systems Faugert & Co Technopolis Ltd. 23 December 2008; Arnold, E., Barker, K., Slipersaeter, S., Research Institutes in the ERA, Technopolis Group/MIoIR/NIFU, 2010; Arnold, E., Clark, J., Jíšovka, Z., (2010) Impacts of European RTOs - A Study of Social and Economic Impacts of Research and Technology Organisations, A Report to EARTO
income in the form of institutional funding. In many parts of Western Europe, the funding and performing functions of Research Councils have been separated some decades ago.

Research and Technology Organisations (RTOs) tackle the needs of industry for knowledge and a range of knowledge-related services. Large-scale examples include VTT Finland, the Fraunhofer Society in Germany or TNO Netherlands, but there are also smaller and more specialised institutes. Their origins are often as testing laboratories, product and process developers for industry or branch-based research associations. From an innovation-systems perspective, RTOs place themselves in-between the university sector and industry and they tend to market themselves as intermediaries, interpreters or “bridge builders” between the two “sides”.

The function of RTOs is rooted in the economics of research and the idea that ‘market failure’ makes it difficult for companies to invest in general forms of knowledge. Typically, the role of the RTOs is to assume some of the risks of industrial innovation, helping companies to go beyond what they would be able to do, based on their technological capabilities. Since the overriding purpose of RTOs is to promote industrial competitiveness by technological means, they can only do their job if they in fact are technologically capable and can offer firms inputs that are in advance of or otherwise superior to those available on accessible commercial knowledge markets. What in practice sets an RTO apart from a regular consultancy is the constant need for renewal of competence and capabilities as well as society’s expectation that it is to work with unprofitable customers.

The 2011 OECD report as well as all other studies emphasise the RTOs’ critical role for the countries’ innovation and economic performance through their activities in creating, discovering, using and diffusing knowledge.

Government laboratories focus on producing public goods to meet knowledge needs of the state or wider society. Sometimes referred to as ‘sector’ institutes, they are generally owned by the state and their main function is normally to deliver services and policy-relevant information to government. Examples include nuclear research, marine institutes (which mix counting fish stocks with more fundamental work in marine biology) and metrology. Generally, the bulk of their income comes from the ministry whose policy mission they support

Their typical role is in providing fundamental research in strategically important areas (e.g. nuclear research or public health), supporting public policy through precautionary research (e.g. into sustainable development or food safety), policy design and monitoring, supporting the building of technical norms or standards, and constructing, maintaining and operating key facilities.

Some government laboratories strongly support innovation, through certification, testing, monitoring and measurement, finding new uses of existing knowledge, creating links between scientific fields and establishing multidisciplinary knowledge bases (such as gene banks and quality-assured scientific collections).

The 2011 OECD report identified another category of non-university research organisations, i.e. ROs that have research only as a secondary function. These include entities with strong public-service goals (e.g. hospitals) or a strong cultural focus (e.g. museums and libraries). In some countries, these institutes are considered as integral part of the research system or research infrastructure (e.g. the research-oriented hospitals in Italy and the museums and libraries in Denmark).

Whereas the entities with public-service goals can be considered as a sub-category of the Government laboratories, those with a cultural focus are typically considered as part of the R&D system in their function of providers of infrastructure for research. They therefore constitute a fourth RO category.

The categorisation above is not perfect: especially larger “national” RTOs, which play an important “infrastructural” role in their respective country have several distinct missions. These RTOs typically combine, for example, advice to government, public laboratory services (e.g. assaying, norms and standards), condition surveillance (e.g. environmental monitoring), facilities hosting as well as strategic research and contract R&D for enterprises.\(^\text{14}\)

In this context, **Higher Education Institutes** (HEIs) are considered an integral part of the scientific research component in the R&D system, including the university hospitals. They perform a wide range of roles, responsibilities and activities, and cut across different economic, political and social networks.\(^\text{15}\)

Their primary mission, however, is education and in this context they have an additional role to play in the NIS, i.e. the education of the future researchers - to the benefit of the research and the industry sector alike. Many governments and universities therefore strongly support the interconnection between teaching and research as one of the core principles of higher education, and encourage stronger partnerships and knowledge exchange between business and academia. The concept of the Entrepreneurial University is an illustration of this approach.

3.2.3 The use of thresholds

When considering the scope of research assessment systems, an aspect that should be considered is the size of a unit of evaluation, especially as measured by research outputs. There are various factors that need to be taken into account:

Firstly, a proper evaluation exercise is a particularly **time and resource-consuming** endeavour. This is true for the body carrying out the assessment, as it means that a considerable larger number of units of evaluation would be assessed if only those of a certain minimum size were considered. However, this resource factor is even more significant for the units of evaluation themselves, especially relatively small units. For small-scale research groups or organisations with minor research components in a certain field, the resources involved in drawing together a submission for a research assessment can provide a potentially insurmountable burden, or at the very least call into question whether participation in the assessment is worthwhile at all.

Especially in the context of sophisticated assessment systems, the presence of small units can present a problem also to the assessors themselves: for certain types of assessment data, units with a small number of overall outputs can decisively hamper the **robustness** of results. This is especially true in the case of metrics and bibliometrics. Regardless of whether the institution, the department or the field is the unit of evaluation, there is a certain minimum for robustness and validity. Below such a minimum, it becomes harder to identify statistical outliers and a single output can decisively skew the overall result.

14 Research and Technology Organisations in the evolving European Research Area – a status report with policy recommendations, European Association of Research and Technology Organisations - EARTO, 2013

In the case of bibliometrics, 50 research outputs generally presents a suitable minimum threshold for meaningful analysis to take place. This threshold is, for instance, always used by CWTS, Leiden University, in their bibliometrics to support institutional evaluations across Europe.

International practice highlights some approaches to minimum thresholds as eligibility criteria for participation in evaluation, in the overall majority of cases expressed in terms of research outputs. Australia takes a possibly interesting approach: the ERA2015 defines Low Volume Thresholds (50 indexed apportioned journal articles or apportioned weighted outputs) at the level of field or sub-field. It hereby accommodates two needs: smaller units may reach the threshold at the field but not sub-field level, while large departments may want to be broken up for assessment purposes at the sub-field level (see the Country Analyses background report).

However, it should be noted that many countries do not apply thresholds for participation in evaluation. The reasons are simple:

- The R&D system is sufficiently concentrated and there is no significant presence of small units (meaning that there is no need for thresholds for robustness purposes), or most often,
- The national evaluation covers only the major actors in the R&D system, typically the universities. Other types of research-performing organisations are assessed separately (and differently).

3.3 The evaluation method

In this section we cover the three main methods for evaluation of research performance: peer review, bibliometrics, and informed peer review.

We first reflect on the use of expert panels and the strengths and weaknesses of this method (Section 3.3.1). We then reason on bibliometrics, its use in international practice and the different approaches and issues arising (Section 3.3.2). Finally, we cover the third method, which combines the two methods, i.e. informed peer review (Section 3.3.3).

3.3.1 Peer review

There are good reasons why expert panel evaluation is still the preferred practice in the UK RAE/REF and other research assessments such as the Dutch Standard Evaluation Protocol. Notions such as quality and impact are best judged by experts rather than metrics. This relates in particular to the capacity of expert panels adequately to assess the performance of actors in the different fields (and sub-fields) of science (see Chapter 0, below). Peers possess the needed specific knowledge and understanding to take into account the specifics of the disciplinary cultures, ranging from different publication profiles to the needs for research infrastructure, as well as the roles of the different actors in the R&D system for the field, and can position it in an (international) quality framework.

The EC Expert Group considered:

“Assessing research quality requires a detailed understanding of the knowledge cluster, in order to evaluate the methodological soundness of the research and the (potential) significance of its contribution to knowledge.
Only peers tend to have such an understanding, and this is why peer review has always been an important quality control instrument.”

However, with the expansion of the research system and the assessment procedures, peer review is under considerable strain. A practical problem widely discussed is that the explosion in peer review effort required by research funders, research evaluators and the overall growth in the numbers of scientific journals and publications is placing high demands upon the capacity of the community to undertake peer review.

A partial solution to this issue is the ‘remote’ panel evaluation. As mentioned in Section 3.2.1, above, panel evaluations are common practice in institutional evaluations. Typically, they include on-site visits as an opportunity for interaction with both the organisation’s management and its academics, which allows the expert panels to deepen their understanding of the institutional environment.

This use of on-site visits is seldom the case in national evaluations covering all themes and fields, due to the scale of the exercise. Also in the case of other evaluations, including institutional ones, an increasing number of countries started adopting the ‘remote’ panel evaluation model. This reduces the costs of the evaluation as well as the burden on the reviewers in terms of time investment. In most cases, the interaction among the experts themselves is kept because of its importance in the decision-making process, so a (minimal) number of physical panel meetings are foreseen. Such an approach has been adopted, for example, in the UK RAE/REF exercises, disciplinary evaluations in Norway, and the newly developed Swedish FOKUS.

Peer review also has its inherent problems: it is costly and time consuming, prone to bias, leaves no audit trail and can even be open to abuse. A study of review panels in operation\(^\text{17}\) highlights other important weaknesses:

- Selection of panel in/excludes ‘schools’ of thought
- Time limits set by the organisers affect outcomes
- Tacit negotiations and compromises affect decisions - disagreements among peers get swept under the carpet
- Those who feel they have less knowledge rate more positively
- Division of labour within panels means some judgements are made by individuals, not the full panel

These weaknesses can be neutralised by means of procedural guarantees. We cover international practice from this perspective in Section 3.7, below.

3.3.2 The use of bibliometrics

The weaknesses of the panel method are exactly the kinds of problems that bibliometrics seek to address.\(^\text{18}\) However, there may be problems with the bibliometric data coverage in certain fields of research, and there is no general agreement that indicators based on citation counts can capture what is understood as research quality.

\(^{16}\) Expert Group on Assessment of University-Based Research (2010), *Assessing Europe’s University-Based Research*, European Commission, DG Research

\(^{18}\) For a thorough professional discussion of the possibilities and limitations in the use of bibliometrics for research assessment, see: Moed, Glänzel, and Schmoch: *Handbook of Quantitative Science and Technology Research* (Kluwer 2004) and Moed: *Citation Analysis in Research Evaluation* (Springer 2005).
In this context one should note that in the countries using metrics-based PRFS (the Flanders, Finland and Norway – see the report Evaluation systems in international practice (Background report 1), these systems are not regarded as research evaluation and they are instead complemented by other evaluation systems of a more formative character that are based on informed peer review.

Our sample of international assessments informing PRFS and their use of bibliometrics also suggests that policymakers generally fail to adopt many of the more sophisticated indicators the bibliometricians can provide. We summarise our findings below.

Use of journal impact factors is widespread, despite the growing understanding that these are inappropriate as indicators of the quality or impact of individual articles. In this context we refer to the San Francisco Declaration on Research Assessment (2013), published by the international bibliometrics research community, which warns against the inappropriate use of Journal Impact factors, at all levels of the R&D system. A theme that runs through these recommendations is the need to assess research on its own merits rather than on the basis of the journal in which the research is published.

The use (and abuse) of bibliometrics for research performance assessments spurred to bibliometric community also to the development of the Leiden Manifesto, which states in its draft version of September 2014):

1. Metrics should be properly used to support assessments; they do not substitute for judgment. Everyone retains responsibility for their assessments.
2. It is easy to underestimate the difficulty of constructing accurate data. Spend the time and money required to produce data of high quality. Those mandating use of metrics should be able to provide assurance that the data is accurate.
3. Metrics should be transparent, the construction of the data should follow a clearly stated set of rules. Everyone should have access to the data.
4. Data should be verified by those evaluated, who should be offered the opportunity to contribute explanatory notes if they wish.
5. Sensitivity to field differences is important. Metrics will differ by field. Humanists will not be able to use citation counts; computer scientists will need to ensure conference papers are included; and chemists will look the best in raw metrics constructed from Web of Science data. The state-of-the-art is to select a suite of possible indicators and allow fields to choose among them.
6. Normalize data to account for variation in citation and publication rates by field and over time.
7. Metrics should align with strategic goals

International practice in this context is as follows:

- The Belgian (Flemish) BOF counts numbers of publications and citations in the Web of Science (WoS). It weights publications using JIFs as part of the funding formula. A Flanders-specific database of scholarly articles in journals, articles in books, and books, in the social sciences and humanities is used to extent the list of ‘approved’ journals beyond those internationally indexed
- Denmark, Finland and Norway, all of them using the “Norwegian model”, also extend the data coverage to all scholarly peer-reviewed publications in journals, series, book chapters, and books, but makes no separate calculation for WoS publication (as in Flanders). The publications are weighted into “publication points”, taking into account both publication type, number of authors and the level of the publication channel: Level I (the “normal” level, representing 80 per cent of the publications and level II (only for publications in the most prestigious international channels in each field). The weighting system is supposed to balance between different publication practices, thereby reducing the need for field normalisation.
• Italy (VQR) uses an informed peer review process for the greater part of the funding, based on outputs submitted by individual research organisations to the evaluation process, but complements this with indicators to allocate the balance. The indicators used are ScImago journal rankings and Journal Impact Factors and number of citations per article relative to the average in its field. The results of the peer review and bibliometric exercises are used separately to allocate units of assessment into broad quality bands, and the combination of these bands with the volume of output then drives the funding provided.

• Sweden’s system is being revised as we write, but the most recently applied system drives institutional research funding 50% based on external research income and 50% based on output indicators. The latter is based on WoS-data only and comprise: number of publications; the percentage of publications that are not cited (or cited only by the authors themselves); the proportion of self-citations; field-normalised citation rates; the percentage of publications in the 90th, 95th and 99th percentiles for citations in their fields; journal-normalised citation rate; journal to field normalised citation rate.

• UK – REF uses peer review, informed in the case of those panels that desire it by citation counts and contextual analysis to help clarify citation behaviour and patterns in the relevant field. Use of journal impact factors and other bibliometric indicators not supplied through the REF administration is forbidden. One panel (Computer Science and Informatics) had planned to use Google Scholar data as a way to capture more of the conference activity that is central to the way that field communicates, but was defeated by inability to collect the needed data.

3.3.3 Informed peer review

It is reasonable to say that both peer review and bibliometrics (as about any other evaluative technique used in relation to R&D) have their weaknesses and strengths. As the Dutch Committee on Quality Indicators in the Humanities stated,

“The most serious objections to peer review can be neutralised by means of procedural guarantees and by utilising external indicators [bibliometrics] that give an inter-subjective basis to the judgment of peers.”

Since at least three decades, the international practice has been to combine the two approaches, with bibliometrics informing the peer review. The evaluation methodology hereby exploits the ability of indicators to represent large sets of data in a simplified overview while exploiting the ability of peers to make more qualified judgments about excellence, coherence and other qualitative aspects that cannot be achieved through indicators alone.

This ‘triangulation’ approach is standard in modern R&D evaluation practice. It is common practice for the professional evaluator to use multiple evaluation techniques and methods in parallel and compare their results before reaching a final judgment.
3.4 The structure and level of analysis

In this chapter we first describe factors influencing the definition of the unit of evaluation and subsequently, the approach in international practice to the inclusion in the analysis of the individual researcher.

3.4.1 The unit of evaluation

The unit of evaluation can be the individual researcher, a research group (field defined), the faculty, the department, or the institution.

The selection of the most appropriate unit of evaluation is to a large extent dependent on the purpose of the research assessment. In ‘general’ evaluations, the deciding factor is the most suitable level for the collection of the information that is required for policy making or governance; in PRFS it is driven by the level at which the funding is allocated.

In research performance assessments, there are various sets of considerations that leave most systems with the task of balancing emphasis on institutions on one hand and scientific field or research group on the other.

A major factor for decision-making in this regard is the evaluation model. In fact, bibliometrics and panel evaluations are variably flexible from this perspective.

Metrics-only systems can collect data about outputs at the level of the individual researcher, as is most obviously done in the countries that operate a national research information system for this purpose, such as Norway and the Czech Republic.

To our knowledge, nobody allocates institutional funding at this individual level – that would be unreliable and erratic. Normally, outputs are aggregated to the organisational level and used to determine the institutional funding for the research organisation as a whole. It is possible to aggregate results also to the level of individual groups or faculties (and some research organisations appear to run shadow systems in order to do this). However, allocating institutional funding to intra-organisational entities would challenge the principle of the autonomy of universities and other research organisations, so this tends not to be done.

Peer review systems could have this same flexibility only if they had the capacity to assess all the output produced by each individual researcher – which is impossibly resource intensive. To our knowledge, the only country adopting such system is New Zealand (see the Country Analyses background report).

Research organisations therefore select what outputs they submit for peer review, so this becomes an act of research management rather than one of individual performance. Where assessment systems ask for contextual information (such as the appropriateness of the available research equipment, group research income and so forth) the unit of analysis also has to be a collective rather than an individual. Since peer review assessment works using discipline or ‘field’ panels, it cannot relate directly to the overall performance of a research organisation – though the funding outcome certainly is organisationally connected.

3.4.2 The inclusion of individual staff

Different evaluation systems take different approaches to the question whether and how all of the individual researchers should submit a selection of their research outputs for review.

Broadly, there are two different approaches:

- The evaluation is comprehensive, i.e. all researchers at an institution must submit a selection of their work. Systems that take this approach typically specify clear inclusion criteria, including most often a minimum level of professional attachment to the institution (eg at least 0.2 full-time equivalent contract in New Zealand), as well as other criteria detailed below where applicable. This approach
allows for a relatively representative overview of the outputs, quality and/or impact of research within the unit of evaluation. Exhibit 9, below, shows that this approach is taken in Australia, Finland, Italy and New Zealand.

- In the UK RAE, the units of evaluation are expected to identify a smaller selection of its researchers who will then submit their work. This normally means - implicitly or explicitly - that the ‘best’ researchers’ work will be put forward. This reduces the burden on the evaluators, as the overall amount of submitted work is smaller. Conceptually, this approach does not give a representative overview of all research activity that has occurred in an evaluation unit, but instead indicates the maximum standard that the unit is capable of.

Exhibit 9 Individual researchers included in evaluations - Australia, UK, Finland, New Zealand and Italy

<table>
<thead>
<tr>
<th></th>
<th>Australia</th>
<th>UK</th>
<th>Finland</th>
<th>Italy</th>
<th>New Zealand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academics included in evaluation</td>
<td>All academics*</td>
<td>Yes</td>
<td>Yes (indirectly)</td>
<td>Yes</td>
<td>Yes (for submission, not evaluation)</td>
</tr>
<tr>
<td>Selected sub-group of academics</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criteria for selection</td>
<td>There are detailed eligibility although the objective is comprehensive submissions</td>
<td>Units select the academics to be included. Beyond that: ‘Category A’ specifications must apply; special circumstances for early career researchers; minimum 0.2 FTE</td>
<td>Academic staff (gradations apply depending on rank/seniority)</td>
<td>All eligible academics are included in the assessment of the TEO. The EO only excludes the academics (with low score) that do not add value to the overall score of the university department</td>
<td></td>
</tr>
</tbody>
</table>

There are weaknesses to both approaches: comprehensive inclusion of staff may for instance obscure the presence of a select few outstanding researchers in an overall average unit, whilst selection of the best examples may obscure a bulk of relatively poor quality research also happening in the unit.

Importantly, it should be noted that other evaluation systems avoid setting the level of assessment down to the individual researcher level. Research outputs are submitted for peer review based upon a selection of the work at the level of research group or department, not at the level of the individual researcher.

A common concern is expressed in all countries where individual researchers and the results of their research activities constitute the level of analysis. This is especially the case in evaluations that inform a PRFS, such as in the UK RAE, Australia and Italy.
Final report 1: The R&D Evaluation Methodology

Even though the assessment of individuals is not an objective in any of these evaluations, the inclusion of results at the individual level has created unintended and negative effects on career prospects and the R&D system as such.

In consideration of these negative and unintended effects, the UK REF changed its approach and now considers the work of research groups rather than individual researchers.

3.5 The focus of evaluation: scientific disciplines

This chapter focuses on the differences among the scientific disciplines and their implications for research performance assessment.

Differences among disciplinary cultures derive from the history of the disciplines or research fields and are influenced by their size and the way in which research is conducted. Schmoch (2010) worded it: “The scientific production process has a complex structure which is shaped by technical and social influences.”

They are expressed in terms of output types, main publication patterns, channels and timelines, citation behaviours, language of publication, collaboration behaviours and needs, intensity of the use and need of (human and financial) resources and research infrastructure, etc.

In the sections below we cover three major topics that are of particular relevance to this study: the differences in collaboration patterns, publication and citation practices, and societal missions. In the final sections we briefly describe how these differences among the scientific disciplines are handled in evaluation practice, in general and more specifically in relation to interdisciplinary research.

3.5.1 Collaboration patterns

Building upon data collected in the first national research assessment in Italy, Franceschet and Costantini (2010) studied how scholar collaboration varies across disciplines in science, social science, arts and humanities and the effects of author collaboration on impact and quality of co-authored papers. Their analysis showed that collaboration intensity neatly varies across disciplines:

- The intensity of research collaboration is negligible in arts and humanities: the set of paper co-authors is frequently a singleton
- Social scientists often work in teams, sharing competencies and other resources, but collaborations are smaller in scale and formality compared to science disciplines
- By contrast, collaborative work is heavily exploited in science, in particular in physics and medicine
- Collaboration is, however, moderate in mathematics, computer science, and engineering

There are differences also within the broad disciplinary areas: in the social sciences, collaboration in research has become the norm in psychology while philosophers are more inclined to work alone; a ‘collectivistic’ practice is noted in some subsectors of physics (e.g., high energy physics), where the scale and the complexity of research projects imply a professional organisation in large teams.

These differences in collaboration behaviour have important implications for the ‘natural’ organisational unit of research for assessment. The EC Expert Group on Assessment of University-based Research (further: EC Expert Group) considered:

“In the life or physical sciences, the basic unit tends to be the research group. In contrast, in many parts of the humanities, research tends to be conducted on an individual basis, and the individual constitutes the natural unit of research. In clinical medicine, the unit tends to be a multi-disciplinary project group, and one individual can participate in several groups.”

3.5.2 Publication and citation practices

Research fields show a high level of heterogeneity also in their publication practices and profiles. Some fields (especially in the humanities) publish in monographs or books; others (notably the basic sciences) in journals. Applied scientists and engineers often communicate more via conference proceedings than through learned journals. Mathematicians write few but extensive articles; chemists produce many, short articles. While in the biomedical sciences hardly any researcher publishes a book, historians publish about 60% of their research in books rather than journals. Also, a good biomedical researcher will be able to publish around five articles from a given research project, whilst for instance in engineering this ratio is significantly lower. Some fields have a large canonical literature that needs to be cited, others – often the newly emerging ones – do not have this. Additionally, when new sub-fields or interdisciplinary areas of interest arise, they rarely fit into the established publication channels and high impact factor journals of their overarching discipline, whilst their own niche-journals can take time to become established.

The differences in communication practices among the scientific disciplines regard a broad set of aspects, ranging from the preferred form, outlet and publication channels to publication propensity and citation practices.

The EC Expert Group mapped the primary forms of communication in the major discipline groups as shown in Exhibit 10, below. In this context it highlighted that an evaluation focus on journal articles only cannot do justice to the contribution of all scientific disciplines.

Exhibit 10 Primary Form of Written Communications by Discipline Group

<table>
<thead>
<tr>
<th>Natural sciences</th>
<th>Life sciences</th>
<th>Engineering sciences</th>
<th>Social sciences and humanities</th>
<th>Arts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journal Article</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proceedings</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Book chapters</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Monographs/Books</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Artefacts</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Prototypes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Source: Expert Group on Assessment of University-Based Research (2010)

The most obvious and most frequently cited examples in the literature in terms of publication practices are the differences that exist between the natural and physical sciences on the one hand, and the humanities, arts and social sciences on the other. However, the picture is more complex and differences in publication behaviour have been identified also at the discipline and sub-discipline levels. Mutz et al (2013)

22 Expert Group on Assessment of University-Based Research (2010), *Assessing Europe’s University-Based Research*, European Commission, DG Research
saw great differences in particular within the natural sciences and humanities and concluded: “There are not only differences between scientific disciplines in the research output profiles; there is also great heterogeneity of research output profiles within disciplines and segments of disciplines, respectively.”

Butler (2007) came to a similar conclusion and noted that, for example, in high-energy physics, theorists tend to publish more frequently than experimentalists.

Considerable differences exist also in the citation practices. Sandström and Sandström (2009) state, “It is well known that medical researchers tend to produce more, often shorter papers where methodology and prior knowledge is codified in citations; and engineering scientists produce less frequently and have fewer cross-references.” Referring to the journal impact factors (published, for example, by Thomson Reuters in its Journal Citation Reports), the EC Expert Group mentions, “In mathematics, a journal impact factor of 1.0 is high whereas in biochemistry journals with an impact factor of 1.0 is in the lower range. In the social sciences and humanities, journals tend to have impact factors below 1.0.”

Other topics covered by the EC Expert Group in this context include the scope of research, which inevitably influences the incentive to publish internationally (‘national’ disciplines, e.g. studies on history, literature, language, law, versus ‘global disciplines’), the language of publication (English for the natural, life and technical sciences; the national language for certain parts of social sciences and humanities), and the time span of relevant research, i.e. the time span over which the research is relevant and cited by other researchers (in the natural and life sciences, normally 5–10 years; in the social sciences and humanities sometimes 10 years is considered too short).

The data below give a more detailed view on the differences across research fields in terms of expected types of output and forms of publications, including their coverage in the international bibliometric databases. The data refer to scholarly publications in Norway, defined as “Scholarly publications, usually peer-reviewed before publishing, where the author(s) present their own new and original research findings in a format that allows for a critical assessment and use of the findings by other researchers in further research.”

Exhibit 11, below, shows the large variations in publication patterns across research fields and major areas with regard to use of foreign language, publication type, and Web of Science coverage.

Exhibit 11 Scholarly publication patterns

<table>
<thead>
<tr>
<th>Major area</th>
<th>Field</th>
<th>WoS coverage of all publications</th>
<th>WoS coverage of journal articles</th>
<th>Foreign language (ISSN)</th>
<th>Articles in books (only ISBN)</th>
<th>Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>Engineering</td>
<td>63 %</td>
<td>86 %</td>
<td>97 %</td>
<td>74 %</td>
<td>26 %</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>Biomedicine</td>
<td>97 %</td>
<td>98 %</td>
<td>100 %</td>
<td>98 %</td>
<td>2 %</td>
</tr>
<tr>
<td></td>
<td>Clinical Medicine</td>
<td>94 %</td>
<td>95 %</td>
<td>83 %</td>
<td>99 %</td>
<td>1 %</td>
</tr>
</tbody>
</table>

The R&D Evaluation Methodology

<table>
<thead>
<tr>
<th>Major area</th>
<th>Field</th>
<th>WoS coverage of all publications</th>
<th>WoS coverage of journal articles</th>
<th>Foreign language (ISSN)</th>
<th>Articles (only ISSN)</th>
<th>Books</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>57%</td>
<td>57%</td>
<td>64%</td>
<td>99%</td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95%</td>
<td>99%</td>
<td>99%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40%</td>
<td>47%</td>
<td>54%</td>
<td>86%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88%</td>
<td>91%</td>
<td>93%</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79%</td>
<td>84%</td>
<td>92%</td>
<td>94%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49%</td>
<td>65%</td>
<td>68%</td>
<td>76%</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63%</td>
<td>72%</td>
<td>79%</td>
<td>87%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>20%</td>
<td>33%</td>
<td>43%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62%</td>
<td>79%</td>
<td>91%</td>
<td>79%</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93%</td>
<td>96%</td>
<td>100%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>87%</td>
<td>88%</td>
<td>89%</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>Health Sciences</td>
<td>All subfields</td>
<td>75%</td>
<td>84%</td>
<td>81%</td>
<td>90%</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11%</td>
<td>22%</td>
<td>50%</td>
<td>49%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>8%</td>
<td>44%</td>
<td>59%</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>18%</td>
<td>44%</td>
<td>51%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>21%</td>
<td>89%</td>
<td>45%</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>11%</td>
<td>50%</td>
<td>65%</td>
<td>31%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
<td>51%</td>
<td>86%</td>
<td>35%</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4%</td>
<td>9%</td>
<td>34%</td>
<td>47%</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>14%</td>
<td>31%</td>
<td>43%</td>
<td>56%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>27%</td>
<td>96%</td>
<td>38%</td>
<td>54%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16%</td>
<td>33%</td>
<td>36%</td>
<td>48%</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21%</td>
<td>36%</td>
<td>75%</td>
<td>59%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>17%</td>
<td>28%</td>
<td>58%</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3%</td>
<td>8%</td>
<td>52%</td>
<td>38%</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8%</td>
<td>16%</td>
<td>34%</td>
<td>51%</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>12%</td>
<td>38%</td>
<td>58%</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>14%</td>
<td>39%</td>
<td>48%</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
<td>45%</td>
<td>82%</td>
<td>40%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0%</td>
<td>1%</td>
<td>12%</td>
<td>30%</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6%</td>
<td>12%</td>
<td>86%</td>
<td>50%</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9%</td>
<td>14%</td>
<td>50%</td>
<td>60%</td>
<td>39%</td>
</tr>
<tr>
<td>Humanities</td>
<td>All subfields</td>
<td>9%</td>
<td>18%</td>
<td>44%</td>
<td>47%</td>
<td>47%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
<td>89%</td>
<td>97%</td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92%</td>
<td>96%</td>
<td>99%</td>
<td>95%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22%</td>
<td>55%</td>
<td>93%</td>
<td>40%</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75%</td>
<td>85%</td>
<td>96%</td>
<td>88%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94%</td>
<td>96%</td>
<td>99%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td>Humanities</td>
<td>All subfields</td>
<td>81%</td>
<td>90%</td>
<td>97%</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85%</td>
<td>89%</td>
<td>97%</td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92%</td>
<td>96%</td>
<td>99%</td>
<td>95%</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22%</td>
<td>55%</td>
<td>93%</td>
<td>40%</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75%</td>
<td>85%</td>
<td>96%</td>
<td>88%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94%</td>
<td>96%</td>
<td>99%</td>
<td>97%</td>
<td>3%</td>
</tr>
<tr>
<td>Natural</td>
<td>All subfields</td>
<td>81%</td>
<td>90%</td>
<td>97%</td>
<td>90%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12%</td>
<td>22%</td>
<td>65%</td>
<td>56%</td>
<td>37%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18%</td>
<td>32%</td>
<td>61%</td>
<td>58%</td>
<td>38%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55%</td>
<td>69%</td>
<td>78%</td>
<td>80%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>14%</td>
<td>33%</td>
<td>49%</td>
<td>45%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35%</td>
<td>44%</td>
<td>76%</td>
<td>78%</td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2%</td>
<td>3%</td>
<td>27%</td>
<td>64%</td>
<td>29%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33%</td>
<td>39%</td>
<td>93%</td>
<td>85%</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27%</td>
<td>60%</td>
<td>64%</td>
<td>45%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12%</td>
<td>26%</td>
<td>39%</td>
<td>45%</td>
<td>50%</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>All subfields</td>
<td>18%</td>
<td>30%</td>
<td>49%</td>
<td>60%</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>All subfields</td>
<td>48%</td>
<td>67%</td>
<td>71%</td>
<td>72%</td>
<td>25%</td>
</tr>
</tbody>
</table>

Notes: Based on the registration of 70,500 scholarly publications in Norway’s Cristin-system since 2005

Source: Sivertsen, G. (2014)
Publications in books are more frequent in the humanities and social sciences, but there are also large field variations within these major areas. In engineering, articles in books (ISBN) represent the strong tradition of publishing in peer-reviewed conference proceedings. In the other major areas, journal articles are the most frequent publication type.

The use of foreign language will depend on the international relevance versus the local societal relevance of the research being performed. The use of the national language is more frequent in the humanities and social sciences (again with large variations among fields) and in the health sciences (with the presence of scientific articles also in national professionally-oriented journals).

With regard to Web of Science (of Thomson Reuters) coverage, there are large differences among areas and fields that mainly follow the same patterns as with publication types and use of foreign language. This is because the core idea of Web of Science is to index the scholarly literature that is covered in a core of international journals with articles that often are cited in the same literature. Scopus (of Elsevier) is known to have a wider coverage of journals; however, as shown in Exhibit 12 (based on the same data), the patterns of deficiencies are the same.

Exhibit 12 Coverage in Scopus and Web of Science

Notes: Based on the registration of 70,500 scholarly publications in Norway’s Cristin-system since 2005
Source: Sivertsen, G. (2014)

3.5.3 The societal missions

A primary element that influences the scope for the societal relevance of research is the focus of the investigation. Different fields of science have different contributions to make for the solution of societal challenges that national systems, Europe or even the world are facing. These range from threats to the European social welfare model as costs rise because of ageing and the ever-increasing demands on health and care services, to longer-term global challenges which will continue to increase in significance but which also require immediate attention. First amongst these are global issues like climate change, sustainability and the efficient management of limited resources.
Whereas all fields of research (and types of research) have a societal mission to fulfil, the major differences among the disciplines are in the **directness** of the effects on society and the **time span** needed for these effects to occur.

A key function of science and research is to create and transfer **knowledge**. In a report for the Russell Group, Molas-Gallart, J. et al. (2002)\(^{26}\) highlighted the differences among the disciplines related to the ways in which knowledge can be applied and used outside academia. They mentioned:

- Differences between applied disciplines (like mechanical engineering, business administration or medicine) and fundamental theoretical disciplines (like theoretical physics or philosophy) are that in applied sciences direct channels of application may exist; in the theoretical disciplines, impact on the economy and social welfare is likely to be more long-term and indirect.

- Emerging areas of economic activity are characterised by low market entry barriers and a direct connection can be made between scientific activity and the exploitation of scientific discoveries (e.g. through industrial start-ups and university spin-offs). This is common in science-based emerging sectors such as biotechnology and information technologies.

- In more mature sectors, where barriers to entry are very high, academic discoveries of direct relevance to industry are likely to be protected through patents, and then commercialised. Studies show that IP exploitation is of greater importance for a few science-based sectors, such as pharmaceuticals, chemicals and parts of electronics, i.e. the sectors that are highly dependent on scientific advances and rely on patents as a source of competitive advantage. Patenting and patent commercialisation activities can be expected to be higher in some fields (e.g. pharmacy) than in others (e.g. industrial engineering).

- Channels of diffusion and application of knowledge that are common in, but not unique to, the social sciences are the use and exploitation of the capabilities through the application of skills and tools to specific societal problems.

- Many of the activities of Medical Schools can be classified as 'societal-oriented', in particular, the linkages with university hospitals and the role that these hospitals play in the training of future doctors and in the running of research projects.

The patterns for publication of the non-scholarly outputs\(^{27}\), i.e. **outputs that provide for societal or commercial use of research**, are a useful indicator to illustrate field differences in research missions, independently of the type of research. In research that is funded and expected directly to meet societal needs, non-scholarly outputs, e.g. commissioned reports or publications for wider audiences, can have high relative importance and be even more frequent than scholarly publishing.

- In general, scholars in the social sciences and humanities more often publish directly (as authors of their own publications) for a wider audience in the societies and cultures that they relate to in their research. These publications are both popularisations of research in general (most frequent in the humanities) and professional communication of specific results, e.g. in commissioned reports.

\(^{26}\) Molas-Gallart, J. et al. (2002). Measuring Third Stream Activities - Final Report to the Russell Group of Universities, SPRU, University of Sussex

\(^{27}\) There is no comprehensive quality-assured data set allowing for a quantitative comparison of non-scholarly outputs across fields. The knowledge of these patterns comes from various surveys, evaluation processes, or overviews of the contents of national information systems such as the R&D IS.
(most frequent in the social sciences). In addition, nationally adapted textbooks for students are often preferred over international standard editions in the social sciences and humanities. Consequently, their scholars more often appear as authors of textbooks and other educational material. Note that there are also field differences: History usually has a wider national readership than classical studies or general linguistics, and experts in economics or law are more often asked to produce commissioned reports than experts in anthropology or media studies.

- The societal impact and relevance of the natural sciences, the health sciences and engineering may be high indeed, but not so easy to trace back in non-scholarly publications authored by the researchers themselves. In addition to what may be counted apart from publications, a report on extra-mural activities and collaboration in the self-evaluation may be just as important information for an evaluation panel.

- One should also expect field differences in non-scholarly outputs because of the different roles they take in society. Some fields have a more widespread societal use in education (mathematics or Czech reading and writing versus geology or pharmacology), in professional practice (dentistry and law versus astrophysics and limnology), or in societal and commercial use (informatics or oncology versus palaeontology or philosophy).

3.5.4 Implications for evaluation

Handling the complexity of the differences among the different scientific fields is a challenge for any national evaluation exercise and for obvious reasons, the topic is sensitive especially in the context of evaluations that drive PRFS.

In the international practice (see the Country Analyses background report), two models emerge:

- Systems like the UK Research Assessment Exercise (RAE) and a number of others, instead, solve the issue by make explicit allowance for field-specific characteristics through the establishment of discipline-based panels.

- Many bibliometric-based systems try to overcome field-differences in publication patterns by introducing a system of weights (publication points) that balance the differences in publication patterns and most important, by presenting scholarly publications with complete data from research information systems (not only relying on commercial data sources). The latter is in order to compensate the differences in the coverage of scientific fields in the commercial data sources, i.e. WoS and Scopus (see also Exhibit 12, above).

The approach taken in the UK is worth considering in this context. Throughout its history, the UK RAE has gone a long way in allowing the disciplinary panels to establish variations in assessment methodologies within an overall ‘egalitarian’ framework.

- It allowed the subject panels to develop field variations of the generic evaluation indicators defined. Possible variations regarded, amongst others, the types of outputs, the specific information and evidence required (e.g. on HR management and equipment), indications for the topics of the impact narratives, and (in the REF) the use of bibliometrics as support for the assessment of the research outputs.

- Panels were expected to define their ‘field-specific’ interpretation and understanding of the generic instructions for the attribution of different scores against the assessment criteria.

- The field-specific variations included the definition of weights for the different main indicators that were jointly to define a score against an assessment criterion. An example in the REF is the assessment criterion Environment for which the panels were to cover 4 main indicators: the research strategy; staffing strategy and...
The R&D Evaluation Methodology

staff development (including PhD students); income, infrastructures and facilities; collaboration and contribution to the discipline or research base.

In the long run, however, this drive for perfection has resulted in an increased complexity and most important, a high financial burden – both on the RAE/REF administration and the submitting universities. Butler (2007) worded a common reflection in the evaluation research community on this topic as follows:

“While disciplines have their distinctive characteristics, it is not practical or desirable to develop a discrete set of quantitative measures for every distinct discipline or group of similar disciplines. There must be consistency in assessment among disciplines, while allowing for sensible adjustments to generic indicators.”

3.5.5 Handling inter-disciplinary research

A topic closely linked to the choice of method is the ability suitably to assess and reward interdisciplinary research.

The benefits of interdisciplinary research are universally acknowledged. Importantly, different areas of interdisciplinary research emerge over time, and eventually can become established disciplines of their own. Interdisciplinary research can produce innovative new perspectives and lead to entirely new disciplines emerging.

It is essential that interdisciplinary research is not systematically dis-incentivised through the workings of a research assessment system. This becomes especially problematic in assessments that require any work to be submitted within the context of disciplines. Emerging interdisciplinary fields may then have to compete with the established field, within which they are categorised. Recognising these issues is crucial for any research assessment system, and all the more so in metrics-led assessments.

Both broad approaches to assessing research outputs and quality – bibliometrics and peer review – respectively contain dangers in this respect.

Overall, interdisciplinary researchers often publish in a range of journals and their outputs are spread over several different fields, thus weakening a university’s claim to have concentrations of excellent research. The result is that more narrowly specialised research is encouraged at the expense of cross-disciplinary innovation.

In peer-review based systems, interdisciplinary work likewise poses a challenge, especially so, as peer review necessarily requires grouping of panellists into areas of expertise. Hence the structuring function of disciplines required for peer review clashes directly with work that seeks to transcend these structures. Langfeldt (2006) notes:

“Another aspect of the uncertainty in judging research quality is that reviewers often hold different views — including different assessments of the adequacy of scholarly approaches and methods and the scholarly value and relevance of research questions and topics. The outcome of peer review consequently depends on what kind of expertise is included in the review process — for example, which research fields or what kind of interdisciplinarity, and the inclusion of conservative and mainstream-oriented reviewers or more controversial and non-established directions.”

In most of the discipline-based evaluations (in the UK, Australia and NZ), interdisciplinarity is accounted for by including a broad range of experts in panels and if necessary cross-referring to additional panels. In Australia, submissions at area rather than field level are allowed, thus making research from a mix of reasonably closely related fields un-problematic. Panel members may be assigned between the various panels to bring appropriate expertise to bear on the evaluation.

This approach goes some way to tackle the problem of assessing interdisciplinary research. However, simply conducting reviews according to a ‘mix’ of the contributing fields does not recognise that such research may not just combine but transcend established norms in any of those fields. Moreover, it does not solve the issues around metrics use for interdisciplinary work discussed above, at least where metrics are designated as an assessment tool in contributory fields.

This problem has been tackled in the case of Italy’s VQR: here, every submitted research output needs to be accompanied by several pieces of information, including the specification that the product is an outcome of research in emerging areas or in areas of high specialisation or inter-disciplinary character. In addition to the 14 disciplinary sectors through which research is then assessed, there are 6 additional inter-disciplinary sectors work flagged in this way. Though overall the VQR has a broad range of assessment tools, in these sectors peer review is preferred to metrics due to the limited availability of bibliometric indicators in these often small and emerging fields, as well as in response to the problems outlined above.

Whilst many systems therefore give the evaluated institutions the opportunity to flag interdisciplinary research in some way, so as to trigger various special processes to assess it, the challenge around inclusion of interdisciplinary research in research assessment systems is yet to be met with a solution satisfactory to all. A few general points are worth highlighting at the outset:

- Interdisciplinary fields that have established themselves to a reasonable extent, or fields that combine relatively closely related disciplines are easier to assess than embryonic fields or fields comprising normally distant disciplines
- Metrics are generally not advisable for interdisciplinary research, or should at least be used with extreme caution
- Interdisciplinary work can be a challenge for output assessment, but it can simultaneously be a systemic indicator
- Some degree of qualitative deliberation, either by the assessors or provided by the evaluated institutions usually needs to accompany interdisciplinary outputs in order to then decide on a suitable assessment procedure

3.6 Indicators and assessment criteria

In this Chapter we first introduce some key concepts of indicators and their use in research performance assessment, and then present the different indicator categories, providing a short description and their use in international practice. We also discuss briefly the different approaches in the use of assessment criteria. In the final section we cover the risks related to the use of certain indicators – in particular in PRFS, and how these can be mitigated.

3.6.1 Introduction

Indicators and assessment criteria for research performance assessments are closely related to the theory of knowledge. Knowledge is the major outcome of science and research; it also constitutes its major value – for research, industry and society alike.

An evaluation system that intends to understand research performance in its broader sense, i.e. not limited to the size and scientific quality of research outputs, focuses on assessing the intensity of the **knowledge transfer mechanisms**. Different knowledge transfer mechanisms transfer different types of knowledge:
The R&D Evaluation Methodology

- Publications and patents transfer codified (written) knowledge
- More interactive mechanisms, such as contract and collaborative R&D, transfer both codified and tacit knowledge (know-how, skills).

Knowledge transfer mechanisms are understood as pathways to impact, i.e. those aspects that are critical for the creation of impacts – in the form of increased knowledge and potential use of the research outputs for advancements in research or innovation. They typically constitute the ‘outcomes’ of practice of research activities and are assessed through the use of two categories of indicators: process indicators and systemic indicators (see further below).

A basic concept of evaluation is that indicators should cover the various sequential components of a policy intervention, i.e. the inputs (financial and human resources) for the implementation of activities that are expected to lead to outputs, outcomes and impacts.

We note a clear trend in international practice, including indicator-based PRFS, to extend the focus of investigation from outputs (only) to outcomes, and in some cases such as the REF, even impacts (Exhibit 13).

Exhibit 13 Indicators used in European PRFS (2013)

Source: Technopolis Group (2014)

An ever-returning theme is the importance of the strategic policy objectives for the design of the evaluation methodology. The function of the evaluation and its policy objectives constitute the criteria for the selection of the indicators.

30 Arnold, E. et al. (2012), Knowledge Transfer From Public Research Organisations

31 Arnold, E., Mahieu, B., Horvath, A. (2011), R&D Governance in the Czech Republic, International Audit of the RD&I System in the Czech Republic, Technopolis Group

Different types of indicators reflect different possible sets of aims behind research assessment systems and the wider policy rationales and strategic priorities underpinning them.

- Indicators of research productivity and research quality or excellence are particularly stressed in those R&D systems where the lack of productivity is cause for concern (e.g., Italy, the CR) or where the need is felt for concentration of the research funding (the UK).

- Pathways to impact (research esteem, collaborations, etc.) are focus points for those systems where a major intent is to steer research behaviour in order to overcome specific systemic failures (e.g., in Norway an enhanced institute-HEI collaboration in the PRFS for the research institutes) or foster the societal relevance of research.

- Input from external (competitive) funding sources are selected as indications of quality of research (competitive strength) and the value of the research activities for research and/or society (i.e., responding to the needs as expressed in public competitive funding programmes, contract research etc.).

Whilst some countries have separate evaluation systems for different goals (e.g., Norway’s field evaluations, institutional evaluation and PRFS), which then consequently draw on different indicators to suitably address them, other countries (e.g., UK and Italy) have single, complex assessment systems, which typically draw on a relatively broad range of these different indicator types discussed here, in order to satisfy a wide range of policy needs and strategic priorities and ambitions.
Exhibit 14, below, illustrates the indicator types discussed here and the aspects and features of a national research system they most directly relate to:

Exhibit 14 Overview of indicator types and use

<table>
<thead>
<tr>
<th>Indicator Type</th>
<th>Research Productivity</th>
<th>Research Quality</th>
<th>Relevance of Research</th>
<th>Efficiency/Value for Money</th>
<th>Quality/Sustainability of National Research Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Criteria</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic indicators</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process indicators</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research indicators</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact indicators</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are two categories of indicators: quantitative indicators and qualitative indicators, the latter are collected in narratives.

3.6.2 Input and output indicators

Input Criteria help to clarify and assess the context in which research happens. Firstly this involves basic features such as number of staff in an EvU and relatedly, expenditures on staff and activities. On one hand, indicators of this type can highlight value for money, especially when input indicators are directly contrasted with outputs. Additionally, these indicators can also act as an audit of financial efficiency.

A further form of input indicators concerns the amount of funding received. This can simply be levels of institutional funding, the significance of which depends strongly on the rules attached to institutional funding in a particular country. But more importantly, external funding in the form of national or international competitive funding, corporate funding, contract research, etc are important inputs enabling the corresponding outputs, whilst also demonstrating that the activities or strategy of a unit of evaluation is aligned with wider national or international scientific, social or economic concerns and priorities. Whilst to some degree successful competition for these types of external funding can additionally highlight research quality as well as presence of additional resources (inputs), these measures above all highlight relevance on a unit of evaluation to wider contexts.
Exhibit 15 Input indicators

<table>
<thead>
<tr>
<th>Input criteria</th>
<th>NL*</th>
<th>NO**</th>
<th>SE</th>
<th>UK</th>
<th>IT***</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institutional funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third-party funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• National competitive funding</td>
<td>B</td>
<td>All</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>• International competitive funding</td>
<td>B</td>
<td>All</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>• Contract research</td>
<td>B/S</td>
<td>INS, ISH</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>• Non competitive funding</td>
<td>B</td>
<td>All</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research staff (FTE)</td>
<td>B</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total staff incl. supporting (FTE)</td>
<td>B</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For Netherlands: The SEP provides a non-exhaustive list of suggested indicators, some commonly provided additional indicators (B), and the suggested indicators (S). The indicators are not mandatory. The idea is that each research unit chooses indicators that fits the discipline and corresponds to the mission and strategy.

**For Norway: We mark the cells with INS for institute evaluation for natural sciences (incl. medicine and technology), ISH for institute evaluation for social sciences and humanities, SENS for subject specific evaluation for natural sciences (incl. medicine and technology) and SESH for subject specific evaluation for social sciences and humanities.

***For Italy: there are plans taking shape for additions of indicators to future VQR exercises. We indicate these here (FUT).

Research outputs are the most long-established forms of indicators in research assessment and are used to some extent at least by all countries considered here. Research outputs primarily fulfil the purpose of assessing the productivity of researchers. In the first instance research outputs can fall into various categories, including peer reviewed journal articles, other articles, books/monographs, PhD theses and book chapters. Some countries count just some of these, other all of them, extending also to a range of further possible types of outputs. If the assessment system moves beyond ‘counting’ outputs, or makes further classifications, such as ‘high impact factor’ journal articles, the measurement of outputs then also goes beyond measuring productivity and also encompasses some degree of research quality assessment.

Whilst these types of indicators provide a certain check on productivity and quality, they do not contain consideration to either the resources going into the production of research outputs, not to their impact or the context in which they are produced. Furthermore, beyond the production of research as such, they say little about contribution to the integration and strategic development of a country’s overall research and innovation landscape.
Exhibit 16 Indicators on research outputs

<table>
<thead>
<tr>
<th>Evaluations</th>
<th>PRFS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NL*</td>
</tr>
<tr>
<td>Refereed articles</td>
<td>B/S</td>
</tr>
<tr>
<td>Non-refereed yet important articles</td>
<td>B/S</td>
</tr>
<tr>
<td>Books</td>
<td>B/S</td>
</tr>
<tr>
<td>Book chapters</td>
<td>B</td>
</tr>
<tr>
<td>Conference papers</td>
<td></td>
</tr>
<tr>
<td>PhD theses</td>
<td>B/S</td>
</tr>
<tr>
<td>Professional publications</td>
<td>B/S</td>
</tr>
<tr>
<td>Publications aimed at general public</td>
<td>B</td>
</tr>
<tr>
<td>Policy reports</td>
<td></td>
</tr>
<tr>
<td>Other research output <specify></td>
<td>B/S</td>
</tr>
<tr>
<td>Research (cultural)</td>
<td></td>
</tr>
<tr>
<td>IPR</td>
<td>S</td>
</tr>
<tr>
<td>Other innovation outputs</td>
<td></td>
</tr>
</tbody>
</table>

Co-publications

The issue of how to treat co-publications in research assessment systems centres for the most part on the question of whether co-publications should be “deduplicated” (counted only once) or “fractionized” (counted as shares).

Fractionalising can take place at two levels: between units and between authors (depending on the level of contribution to the publication). Furthermore, there are additional and related questions:

- Fractionalising for co-publications within the same unit versus only between different units
- The level of sophistication to take levels of contribution into account for points allocation
- International co-publications

The decision-making on this topic is related to two issues: policy objectives in terms of fostering collaborations and the need to prevent gaming.

- In Sweden, only first authors and corresponding authors are included, and the publications are split if these researchers come from different institutions
- Norway pays attention to international co-publications, thus implicitly encouraging internationalisation, other publications are generally fractionalised, which effectively discourages, at the best does not encourage co-publication
- In Italy, the notion of not fractionalising in order to actively encourage inter-unit collaboration is explicit: in case of co-authorship across institutions, the research output can be submitted by each of the institutions. Research outputs with more than one author within a single institution, instead, can be submitted only once
- The UK has an overall similar approach. Joint submissions in a unit of evaluation by two or more HEIs are also possible in the instance that this is the most appropriate way of describing research they have developed or undertaken.
collaboratively. A joint submission will be considered in the same way as a single submission and the outcome will be a single quality profile

- New Zealand deals with the issue of individual co-author contribution in qualitative detail: panels will assess joint research on a qualitative basis. To enable this, the staff member should include information on their contribution (relative to other co-authors or equivalent). Panels are solely concerned with the quality of the output and the relative contribution of the researcher. Co-authors or co-producers do not need to be aware of one another’s submissions of the same research output, but they are encouraged to confer about the details of their contributions, to ensure that there is no conflict in the information provided.

There are several different key observations that transpire from this overview:

- Within institutions, co-publications tend only to count once.
- All authors of a co-publication can have equal weighting, but more commonly, systems seek to represent larger and smaller contributions to an output.
- Between institutions, marks for co-publications can either be split, which results in a more accurate picture of the overall research landscape, or it can be double-counted. The latter is the more common approach in the countries we reviewed, and where this happens, it is sometimes done explicitly with the intent of encouraging cross-institutional collaboration.
- International co-publication do not typically lose points to the institution external to the national evaluation system, especially due to internationalisation being desired and encouraged by many systems.

3.6.3 Systemic and process indicators

Systemic indicators are a response to the fact that research outputs are in and of themselves a poor measure of the overall health and quality of a research system, especially in terms of collaboration, mobility and the consequent sharing of knowledge and expertise. There is a distinction between indicators of national and international scope as well as for the different components in the NIS (industry, education etc). These indicators can indicate a certain level of esteem and quality. Especially in the case of international competitive funding, internationalisation also highlights a degree of relevance to internationally recognised concerns and priorities.

However, it is crucial to consider that indicators of internationalisation do not just reflect the extent and quality of outward projection of a nation’s research system, but simultaneously indicate the extent of outside knowledge and expertise that is brought in. This is the fundamental reason why internationalisation is a **systemic** indicator. Alongside national mobility, training and collaboration, these ‘**outside influences**’ are critical to ensuring the development and overall health of national research systems. This is especially the case in smaller countries, hence we see a strong emphasis on internationalisation for instance in many of the Nordic countries.
Exhibit 17 Systemic indicators

<table>
<thead>
<tr>
<th>International cooperation</th>
<th>NL*</th>
<th>NO**</th>
<th>SE</th>
<th>UK</th>
<th>IT***</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• In general</td>
<td>S</td>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Within research community</td>
<td>S</td>
<td>All</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• International mobility</td>
<td>All</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National cooperation</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Within research community</td>
<td></td>
<td>All</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Science-industry</td>
<td></td>
<td>SENS, INS</td>
<td></td>
<td>X</td>
<td>FUT</td>
<td></td>
</tr>
<tr>
<td>• Research-education cooperation</td>
<td></td>
<td>SENS, SESH</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• National mobility</td>
<td></td>
<td>SENS, SESH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Process indicators are a further area of assessment worth considering: research outputs only reflect the ‘end product’ of the research process, but in themselves give little indication of the collaborative, dialogic or training activities that feed into research. These indicators help to ensure that even large numbers of high-quality outputs are not created in an insular fashion with little knowledge transfer benefits to the wider research or industry community.

More than any other set of indicators, these areas of interest contain implicitly the realisation that the process of research itself can, to varying extent, be shared with other researchers: the resulting dialogue and transparency may then allow for new perspectives to be assessed and developed, regardless of publication or prestige of output channel.

Exhibit 18 Process indicators

<table>
<thead>
<tr>
<th>Knowledge transfer to the research system</th>
<th>NL*</th>
<th>NO**</th>
<th>SE</th>
<th>UK</th>
<th>IT***</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Editorship in journals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Conferences etc</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Intra-research collaboration</td>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Knowledge transfer to education

• PhDs enrolment/success rates	B	All		X	FUT	X
• Postdocs						
• Graduate teaching		SENS, SESH		X	FUT	X

Knowledge transfer to enterprises & society

| • Collaboration research-industry | | SENS, INS | | | | |

3.6.4 Impact indicators

Impacts are broadly the most recently adopted type of indicators. More directly than the aforementioned input indicators on external funding, they highlight the extent to which a unit of evaluation’s activities are aligned with wider societal, economic or other strategic needs.

Wider societal, cultural or economic impacts of research present a significant challenge to research assessors, primarily because there often is a long time delay between the publication and an impact of research outputs. Moreover, impact of research can occur either directly or through several proxies. The UK’s REF 2014 is the first major concerted attempt to demonstrate research impact in a systematic way across all disciplines (by means of narratives), and the forthcoming results will
highlight the extent of feasibility of measuring this particularly challenging yet pertinent aspect of a country’s research system.

Exhibit 19 Impact indicators

<table>
<thead>
<tr>
<th>Innovation (spinoff, incubators)</th>
<th>NL*</th>
<th>NO**</th>
<th>SE</th>
<th>UK</th>
<th>IT***</th>
<th>FI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Societal impacts</td>
<td>B</td>
<td>INS, ISH</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.6.5 Assessment criteria

Whilst in metrics-led research assessment there are many issues surrounding the suitability, strengths and weaknesses of the various indicators, they ultimately constitute a form of assessment that is numerical and measurable from the point of observation onwards.

In the case of peer review, it is different: whilst ultimately, peer review still needs to quantify, or at least rank in a coherent manner, the various units of assessment, i.e. produce a verdict that is essentially numerical/quantitative. As such, unlike metrics, peer review requires at some point a transition from qualitative and often holistic expert observation to delineated rankings and categorisation. To a certain extent, this transition places reliance and trust in the expertise and judgement of the reviewers. Typically, considerable guidelines and criteria are put in place to lessen the subjectivity and ‘blind’ trust in the peer reviewers and systematise their qualitative judgements in a more detailed and rigorous fashion.

We summarise some key cases here. Some detailed approaches are different, but broadly the processes are the same.

In Australia, an artificial separation is created between the peer reviewers who directly engage with a unit of evaluation’s outputs and the application of ranking criteria as such, done by the panels. The Peer Review Report consists of a textual response on the quality of the sample of outputs that they have reviewed, against the following broad categories:

- Approach, i.e. methodology, appropriateness of outlet/venue, discipline specific publishing practices etc
- Contribution, i.e. timeliness, originality, significance of the research question, subsequent use by others, contribution nationally and/or internationally etc.

Peer Reviewers do not provide a rating or ranking of any of the work reviewed.

In the UK, reviewers are to consider three aspects in each UoA’s submission, with specific weightings:

- Outputs are judged in terms of their ‘originality, significance and rigour’, with reference to international research quality standards (weighting: 65%)
- Impact is assessed in terms of ‘reach and significance’ of impacts on the economy, society and/or culture (Weighting: 20%)
- Environment, i.e. the institutional conditions, is assessed in terms of its ‘vitality and sustainability’ (Weighting: 15%)

Using these three components and weightings, UoAs then receive a composite categorisation on an overall 5-level quality scale.

The Netherlands has a system of peer review criteria that is broadly similar to that of the UK, with a comparable overall ranking system and main criteria, though with no additionally stated specific criteria for individual disciplines. Guidelines are broad enough to ensure applicability to all disciplines. The review panel evaluates the research based on three main criteria: research quality; societal relevance; and
viability. The review committee provides both a qualitative judgment and a quantitative judgment. The committee ensures that the quantitative and qualitative judgements are in agreement, and that the criteria and judgement are related to the unit’s strategic targets. In addition to these main criteria, the review also provides a qualitative judgement on the unit’s PhD programmes and the unit’s policy on research integrity.

The four-level scale alongside the main categories of ‘Quality’, ‘Relevance’ and ‘Viability’ (more-or-less analogous to the UK’s ‘Outputs’, ‘Impacts’ ‘Environment’ are summarised below:

Exhibit 20 Assessment criteria in the Standard Evaluation Protocol - Netherlands

<table>
<thead>
<tr>
<th>Category</th>
<th>Meaning</th>
<th>Research quality</th>
<th>Relevance to society</th>
<th>Viability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>World leading/ excellent</td>
<td>The research unit has been shown to be one of the few most influential research groups in the world in its particular field.</td>
<td>The research unit makes an outstanding contribution to society.</td>
<td>The research unit is excellently equipped for the future.</td>
</tr>
<tr>
<td>2</td>
<td>Very good</td>
<td>The research unit conducts very good, internationally recognised research.</td>
<td>The research unit makes a very good contribution to society.</td>
<td>The research unit is very well equipped for the future.</td>
</tr>
<tr>
<td>3</td>
<td>Good</td>
<td>The research unit conducts good research.</td>
<td>The research unit makes a good contribution to society.</td>
<td>The research unit makes responsible strategic decisions and is therefore well equipped for the future.</td>
</tr>
<tr>
<td>4</td>
<td>Unsatisfactory</td>
<td>The research unit does not achieve satisfactory results in its field.</td>
<td>The research unit does not make a satisfactory contribution to society.</td>
<td>The research unit is not adequately equipped for the future.</td>
</tr>
</tbody>
</table>

In the **Italian VQR 2004-2010**, the peer reviewers were expected to assess the research products along the criteria listed below:

Exhibit 21 Assessment criteria in the VQR 2004-2010 - Italy

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevance</td>
<td>Relevance, as added value for the advancement of knowledge in the field of science in general, as well as the induced social benefits also in terms of consistency, effectiveness, promptness and duration of the fallouts</td>
</tr>
<tr>
<td>Originality & innovation</td>
<td>Originality/innovation, as contribution to the advancement of knowledge or to new discoveries in the field</td>
</tr>
<tr>
<td>Internationalisation</td>
<td>Internationalisation and/or international standing, as positioning in the international scenario, in terms of importance, competitiveness, editorial spreading and appreciation from the scientific community, including explicit cooperation with researchers and research groups form other countries</td>
</tr>
<tr>
<td>Evaluation of technology transfer</td>
<td>Concerning patents, the judgment must also include the evaluation of technology transfer and development, and socio-economic fallouts (even though only potential)</td>
</tr>
</tbody>
</table>

Based on these criteria, evaluators translated their descriptive judgments into synthetic judgements, and provide all products with a **level of merit** ranging from A (Excellent) to L (Limited). The outcome of the peer review and the bibliometric assessment consist of for each research product a score for the quality with range [1, 2].
3.6.6 Risks and risk management

Risks related to indicators and assessment criteria are related mainly to three topics:

- The quality of the data used
- The unintended effects that some indicators may cause, especially in PRFS
- The balance between costs and benefits

A challenge that most of these research performance assessment models are struggling with regards the **quality of the data**, in particular related to the research outputs.

It led to various measures implemented in the countries covered in order to ensure and enhance the quality of the data entered. Extended control checks have been put in place especially in the Czech Republic and the UK, where the PRFS attribute high importance to research outputs and more than 50% of the core funding is guided by the PRFS. (Exhibit 22)

The issue of data quality is directly linked to the process for the data entry into the system. In most countries, this is a manual process, with the researcher or his/her institution inserting data directly on the interface of the research information system collecting the information. The experience is that this system is prone to mistakes, omissions and duplications. It causes a burden on the researchers or institutions required to enter the data as well as on the processing public agency in charge of the cleaning and checking of the data.

This topic constituted a major driver for the development of national research information systems, foreseeing a **direct harvesting** of the data from the institutional information systems and/or Open Access Repositories and therefore creating a higher level of efficiency as well as ensuring data quality.

In Europe and at international levels, an increasing number of initiatives have been launched in recent years developing national research information systems (RIS). These information systems can take two forms:

- **Research information systems set up by funding agencies**, typically geared towards collecting information for accountability purposes to the benefit of a specific agency in the country. Examples are the VIPUNEN system created by the Finish Ministry of Education and the UK ROS system, capturing data for most of the UK Research Councils

- **Fully national research information systems**, capturing information on all research and its outputs/impacts in the country from a variety of sources. These RIS are often intended to act as platforms for the creation of visibility on outputs and outcomes in society. Examples are the FRIS system in the Flanders/Belgium and the CRIStin in Norway

Exhibit 22 Quality control measures in PRFS

<table>
<thead>
<tr>
<th>Country</th>
<th>Quality control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Formal quality check and estimate of missing data</td>
</tr>
<tr>
<td>Belgium-Flanders</td>
<td>Close collaboration with the institutions (future harvesting)</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Control by the funding providers, IT-based control, peer review control</td>
</tr>
<tr>
<td>Denmark</td>
<td>Responsibility of the institutions (harvesting)</td>
</tr>
<tr>
<td>Finland</td>
<td>Publication Data Collection Manual</td>
</tr>
<tr>
<td>Italy / VQR</td>
<td>Guaranteed by submitter</td>
</tr>
<tr>
<td>Norway</td>
<td>Shared quality assurance system</td>
</tr>
<tr>
<td>UK - REF/RAE</td>
<td>Validation rules, REF audit team: Sample-based verification, Data comparisons, Panel instigated audit</td>
</tr>
</tbody>
</table>
Another topic that is more difficult to handle are the unintended (negative) effects of the PRFS. In this section we focus on effects that are directly linked to evaluation and the use of indicators.

‘Gaming’ is a common effect of the introduction of PRFS, and it is a well-known phenomenon in any PRFS informing a significant share of institutional funding. In the Czech Republic, this phenomenon is additionally accentuated due to the pervasive use of the PRFS throughout the R&D system, down to the level of the individual researcher (see Section 2.1.2, above).

Salami-slicing, i.e. publishing several small and often overlapping papers on a particular research project or idea rather than a single comprehensive article, is a common effect in all countries where metrics used focus on raw publication counts. Researchers in various countries have found various ways to ‘game’ the journal indicators used, for example by publishing in fields ‘adjacent’ to their own, where it was easier to get into journals that gave more points in the PRFS, or where the ‘competition’ is less severe.

In the UK it was found that the on-going process of change in the RAE was an effective way of reducing the effectiveness of the gaming, as was the fact that until after the evaluation exercise, nobody knew how the evaluation results would guide the funding.

A golden rule in the design of an evaluation informing PRFS is that any indicator is vulnerable to gaming. There are however several proposed ways of combining different indicators in order to mitigate these effects as much as possible, in other words, the use of triangulation. This can be the combined use of quantitative and qualitative indicators to assess the same criterion, or the use of the same indicator against two criteria, with potential opposite effects for gaming strategies.

Two measures are the most effective against gaming practices:

- One indicator is only part of a mix of quantitative and qualitative indicators informing an assessment criterion
- The use of expert panels

Finally, there is the issue of the balance cost/benefit. National evaluations are a costly endeavour and the more a high level of sophistication is sought, leading to an increase in information needed, a high number of panels and sub-panels, and/or extensive peer review, the costlier an exercise it becomes. Examples of such more ‘sophisticated’ systems are the UK RAE/REF, the VQR in Italy and the RAE in New Zealand (Exhibit 23).

The high levels of sophistication led in particular to a high burden on the evaluated organisations (the indirect costs).
Restrictions to government budgets have led to a trend towards limiting the costs of national performance assessments in most countries, even though several studies highlighted that national assessments for funding allocations are considerably less costly than the processes for the allocation of competitive funding.

Efforts to reduce costs typically focus on the main cost drivers i.e.

- The high number of indicators and level of information requested from the evaluated research organisations
- The extended use of peer reviewers and the high number of panels and sub-panels

3.7 The implementation of evaluation through expert panels

Panel-based evaluation systems typically set up a hierarchical system of main panels, panels, and sub-panels. The number of panels and the existence of sub-panels depends on the size of the R&D system as well as the depth and complexity of the exercise, quite obviously influencing also its costs.

There are two main characteristics of ‘quality’ panel-based evaluations that all panel-based evaluations strive to comply to. This is typically done through the definition of specific rulings as well as more structural measures (e.g. the tasks of main panels, the panel secretariat, specialist advisors etc).

The robustness of the system is a first key topic of focus. It regards in particular two elements

- **Clear and universal guidelines for the evaluation process:** In a national peer review system many peer review panels are responsible for the primary assessment of the units of evaluation. It is crucial for the quality in assessment that all the panels have the same understanding of the criteria, scoring system, ways to assess the submitted output, etc.

The panels must be guided by detailed instructions and clear and universal guidelines. The guidelines must minimise the differences in interpretation and shaping of the process between panels and ensure a thorough and consistent review procedure. In most countries detailed guidelines for the peer review process are available and made public.
The R&D Evaluation Methodology

- **A professional management and support organisation:** A national peer review exercise is a complex and labour intensive exercise. This requires professional management and a professional support organisation. The management must prepare and coordinate the whole review and is also responsible for the communication to the research organisations. It is also important that the panels and the management are supported by staff, e.g. taking notes, prepare meetings, arrange facilities, etc. This also includes support tools like online systems and a database for statistics, publications and other outputs.

The **fairness** of the system is a second – very important – premise. There are a number of possible biases which can endanger the fairness of the system:

- **Clientelism & nepotism:** The peers should not have a conflict of interest. In most countries there are detailed procedures to avoid a conflict of interest, e.g. a declaration of unbiasedness or the obligation to record declarations of interest.

- **Scholarly bias:** This is an important bias that is often discussed in literature on peer review processes. Scholarly bias results from the fact that judgement by panel members cannot be independent of their own ‘disciplinary culture’. Within a disciplinary culture, certain values, interests, and expectations dominate, as well as research and publication practices, and perspectives on what constitutes high quality or highly relevant research.

The most accepted practice to limit scholarly bias is the inclusion of a wide range of disciplines in review panels and preferably ensure overlap in competences to promote critical debate. Other practices are to frequently replace the reviewers, and to let those under evaluation have input on the reviewers (a direct dialogue between scientists being evaluated and experts evaluating them)

- **Appropriate representation:** in order to ensure a thorough assessment there must be an appropriate representation in the peer review panels. This concerns for example gender balance and geographic distribution of the peers, but also the inclusion of industry, end-users and other stakeholders.

Generally, great care is taken to ensure an appropriate representation in the panels. In Italy and Norway the guidelines contains detailed instruction for ensuring an appropriate representation. Appropriate expertise in the panel can also be ensured by appointing panel members in consultation with the evaluated unit.

The inclusion of stakeholders and users of research is not very common practice.

- **Inter-disciplinary research:** The integration of diverging perspectives and criteria in inter-disciplinary panels can be very difficult. This difficulty especially disfavours inter-disciplinary research (as well as multi- and trans-disciplinary research) as it is expected to meet diverging expectations and criteria of multiple disciplines.

There are several ways to mitigate the risk of disfavouring inter-disciplinary research. In some countries, like Italy, designated inter-disciplinary panels are established. In many countries inter-disciplinarity is accounted for by including a broad range of experts in panels. Finally cross-referring to additional panels is used for a more appropriately assessment of inter-disciplinary research.

- **Consistency of the assessments:** In a common review framework it is important to ensure a common understanding of the assessment criteria, standards and the application of the quality scores. There could be divergence in perspectives between disciplines and even between peers, which poses an important challenge for a consistent assessment according to the generic guidelines. In order to ensure consistency several means could be implemented. Where sub-panels are used, they are generally represented in the overarching main panels, which helps to ensure coherence between the sub-panels. In the UK the main panel undertake
calibration exercises (attend some sub-panel meetings and discuss reports from the sub-panel chairs).

- **Transparency**: Finally transparency of the review process can contribute to the fairness and validity of the assessment. In the literature it is argued that transparency can help guard against scholarly bias and may also help to identify and address conflicts of interests. In most countries there is a large degree of transparency. Procedures are clearly laid out on websites and the outcomes of the reviews are made public. Also panel selection processes are transparent. One of the factors of success for the Italian Research Exercise was the high transparency of the panel selection process.

Finally, various suggestions are made in various sources to limit the **costs of the review** without sacrificing too much quality. In Norway, it is found that having an in-house secretariat to the panel, rather than an external secretariat, is also a way to mitigate costs to the evaluating bodies. In the **ERA 2012 handbook**\(^{33}\), it is stressed that it is the responsibility of a panel member to ensure they adequately prepare for meetings to avoid unnecessary additional administrative costs and inconvenience to other committee members. In an **OECD working paper** on enhancing public research performance by means of evaluation\(^{34}\), it is suggested that ways of minimizing evaluation costs must be sought in the process of application, selection of expert reviewers, and panel discussion of discipline committees. The following ways of controlling the cost of the review meeting are suggested: structuring the agenda so that panel members’ time is used efficiently; and making maximum use of teleconferences, videoconferences, and other electronic media to prepare the review panel. In addition, it is suggested the part of the evaluation cost born by the subject of the evaluation should be minimized by simplifying administrative procedures and evaluation formats.

4. The proposed Evaluation Methodology

The objectives of this study were to develop a national evaluation methodology that would provide strategic information for the actors at all levels in the R&D system (institutional and national) as well as inform the institutional funding for research organisations system.

The expectations listed in the ToR for this study were that the evaluation methodology would

- Apply a peer-review evaluation process
- Fulfil formative and summative functions
- Actively involve assessed entities in the evaluation
- Cover outputs, impacts, and institutional projections of research development
- Take into consideration the different missions of research organisations within the research system
- Take into consideration field specifics
- Set up evaluation processes that will be resistant to clientelism and conflicts of interests
- Take into account ‘gaming’
- Be set up so that total costs do not exceed 1% of public institutional support for R&D in a five-year time period

The Evaluation Methodology described in this chapter responds to these expectations.

The choices upon this Evaluation Methodology is based, were guided by a set of key principles, listed in Section 4.1, below.

In the remaining of this chapter, we set out the core elements of the Evaluation Methodology, i.e. the evaluation structure (Section 4.2), the scope of the evaluation (Section 4.3), the evaluation method (Section 4.4), the assessment criteria (Section 4.5), the indicators used for the data collection (Section 4.6) and the data sources (Section 4.7).

We describe how the Evaluation Methodology handles diversities among the research organisations and fields in Section 4.8) and cover the evaluation results and their intended use in Section 4.9.
4.1 Key principles
We defined the key principles of the proposed Evaluation Methodology as follows:

- The National Evaluation of Research Organisations (NERO) is a national evaluation system focused on the assessment of performance in research and development. It reflects the strategic policy objectives for the Czech RD&I system, takes into account its needs and characteristics, and covers all types of research organisation.

- Its primary function is to act as source for strategic information, at all levels in the RD&I system. The evaluation results will also directly inform the institutional funding for research organisations.

- The assessment of the research performance will take place at the level of field-defined Research Unit (RU) within an Evaluated Unit, i.e. a research organisation or in the case of the public HEI, a Faculty or Institute or any other organisational unit at that level such as Centres. Participation in the evaluation will require a minimum of critical mass.

- The evaluation is a panel-based process of informed peer review. The expert panels will draw on a mix of appropriate quantitative and qualitative data to form their professional judgement. The evaluation process will be conducted in English. It will consist in remote reviews and remote assessments, complemented with panel meetings.

- The evaluation is a fair and egalitarian system. It will use a single framework for assessment across all disciplines and types of research organisation while allowing for a reasonable level of field- and RO type-specific variations. It will be comprehensive, covering all dimensions of the research activities and research outputs, outcomes and impact, as well as the conditions facilitating good research performance.

- The evaluation results will be predominantly qualitative. They will show the reached quality levels against each assessment criterion, with explanatory texts, and hold conclusions and recommendations for future development. Conclusive analytical reports will be developed at the level of EvU, field and disciplinary area, aggregating the information collected at the RU levels.

- The evaluation process will be fully transparent.

- The cost and burden of the evaluation will be the minimum possible to deliver a robust and defensible process.

4.2 The evaluation structure
We have defined the evaluation structure as follows:

- An Evaluated Unit (EvU) is a research organisation, except for the public HEIs where the Evaluated Unit is a Faculty or Institute or any other organisational unit at that level such as Centres.

- A Research Unit (RU) means the group or groups of staff in the Evaluated Unit that conduct their primary research in a specific field, and by extension, the structures and environment that support their research and its application or impact. A Research Unit may comprise staff that work in multiple departments or organisational units in the Evaluated Unit.

Each researcher can be assigned only to one Research Unit in an Evaluated Unit. An Evaluated Unit can register only one Research Unit for a specific field. The scientific fields are the ones defined in the OECD field classification, shown in Appendix A.
We have defined the primary unit of evaluation, i.e. the Research Unit, at the intersection of the ‘natural’ dimension for evaluation of research - the scientific field - and the dimension determined by the need for information at the level of institutions (Exhibit 24).

This will allow for the assessment of the RUs’ role, positioning, and competitive value in the national R&D and innovation system as well as in the international R&D landscape. As research is becoming more and more international, and the competition - as well as collaboration in research - is at a global level, a view on the performance and position of the research actors in the Czech Republic relative to the international landscape is a critical piece of strategic information, for any actor in the R&D system.

Exhibit 24 The Research Unit as primary unit of evaluation

The evaluation is **not** conducted at the level of individual researchers. International experience (in particular in PRFS) shows that any inclusion of even a single component of the evaluation methodology at the level of individual researcher risks having considerable negative unintended effects (see Section 3.4.2, above). Any use of the evaluation results - or part of the evaluation results - at the individual researcher level is therefore inappropriate.

We propose that research organisations will participate to the evaluation on a **voluntary** basis. Costs for participation in a national evaluation can be high, requiring considerable investments in terms of time and resources and it would be unfair to oblige all research organisations - and in particular the small ones - to bear these costs. By deciding not to participate, however, the research organisation will not be entitled to the funding related to the performance-based research funding component in the new institutional funding system. We explain this in more detail in the Final report 2 - *The Institutional Funding Principles*.

Diagram Description

- **(International) Structure of Science**
 - Disciplinary areas
 - Scientific fields

- **National R&D System**
 - R&D Governance Bodies & Agencies
 - Research Organisation
 - Research Institute / University Faculty

- **Evaluated Unit (EvU)**
 - Research unit (RU)
 - Individual researchers
4.3 The scope of evaluation

4.3.1 The typologies of research organisations

In Section 3.2.2, above, we explained that the focus on the attainment of specific goals and objectives, based on the functions in the National Innovation System of the different actors involved, is a basic concept for evaluation in international practice. This is even more the case for evaluations that are expected to assess the performance of these organisations in terms of their value for research as well as for society. Inevitably this focus requires a categorisation that takes into account the mission of these organisations’ activities within the National Innovation System, based on the profile of the primary beneficiaries of their research activities.

In this study we defined the methodology for the National Evaluation of Research Organisations (NERO). The term ‘Research Organisation’ (RO) stands for organisations that have been granted this status by the RD&I Council. They encompass organisations with a variety of legal forms, based on the historical background of the RD&I system. While the mission of public HEIs, universities and the Academy of Sciences research institutes are clear, for other research organisations in the Czech system it cannot be identified in a straightforward manner based on their legal form.

We therefore established the following four categories of research organisations for this Evaluation Methodology, taking into account missions rather than legal forms:

• **Scientific Research Organisations** (ScRO) include the HEIs, research hospitals and Scientific Research Organisations. They are institutions that have as primary function to conduct research to the benefit of the research community. This includes institutions that have as primary activity the conduct of research (the ASCR research institutes) and/or the teaching and training of future researchers, i.e. the public and private HEIs, and the research hospitals. It also includes institutions that conduct research in order to improve their services to the research community, i.e. the research infrastructures.

• **Industry & Business services Research Organisations** (IBRO) are institutions that have as primary mission to develop and transfer technologies and knowledge to the benefit of the industry and business sector. This category includes RTOs and (an increasing number of) consultancies offering expert services or other professional services to industry and business entities.

• **Public Services Research Organisations** (PSRO) are institutions that have as primary mission to develop and transfer knowledge and technologies to the benefit of the Public Sector. They are Government labs or consultancies offering services to the public sector.

• **National Resources** (NatRes) are Research Organisations that provide cultural services: they collect and curate national or regional cultural public goods and provide access to the public and researchers. This category of ROs includes archives, museums, and galleries.

This typology of research organisations reflects international practice and is universally understood. It will allow the (international) evaluation panels properly to assess the performance of the evaluated research organisations against the different assessment criteria, within the context of the different fields. An in-depth analysis of the profile of the Research Organisations in the Czech Republic showed that this

35 See the report *Typology of the Research Organisations and the Effects of the EM Thresholds* (Background report 2)
The R&D Evaluation Methodology

categorisation is fully in line with the organisations' missions in the national context and is therefore fit for purpose.

Apart of informing the evaluation panels, this typology will also form a basis for funding allocation in the PRFS in the new funding principles. We cover this in more detail in the Final report 2 - The Institutional Funding Principles.

For the purpose of this evaluation, we consider the categorisation of the Academy of Sciences research institutes, universities, hospitals and medical research institutes, and research infrastructures in the category Scientific Research Organisations (ScRO) to be mandatory. The same accounts for the categorisation of libraries, archives, museums and other similar Research Organisations in the cultural sphere in the category National Resources (NatRes). The other Research Organisations will be asked to indicate at the moment of registration to the evaluation whether they belong to the category of Industry & Business Research Organisations (IBRO) or Public Services Research Organisations (PSRO).

In line with the rulings for the recognition of Research Organisations, research infrastructures are explicitly covered in the EM only if they are alone-standing legal entities, recognised as Research Organisations. Research infrastructures that are not alone-standing entities (and therefore not recognised as Research Organisations) are included in the assessment in case they are organisational units in the ASCR/universities.

In both cases, we categorise the research infrastructures (RI) under the category Scientific Research Organisations. This categorisation is based on the understanding that a specific evaluation methodology for research infrastructures is in place, developed by the IPN Team. This methodology covers the evaluation of all research infrastructures, independently from their legal status, and focuses on the specific features that define their efficiency, effectiveness and quality in performance. In the case of the NERO, the results of which informs part of the institutional funding for research, the focus for assessment is the quality of the research activities conducted within the organisational structure of the RI. As for any other Research Organisation, also the effects of the research on the users community will be taken into account.

From a numeric perspective, the Scientific RO category accounts for approximately half of the ROs, while the three other RO categories take up a close-to-equal share of the RO base (between 15% and 17% - In terms of institutional funding actually allocated to the RO type categories, the Scientific ROs accounted for about 90% of the institutional funding for research organisations in 2012 (see Exhibit 25, below).

Exhibit 25 RO type categories – shares in overall number and institutional funding

Notes: Data on the number of ROs are based on the list of ROs in February 2015; data on institutional funding are based on 2012 data
Source: Návrh výdají státního rozpočtu České republiky na výzkum, experimentální vývoj a inovace na rok 2012 s výhledem na léta 2013 a 2014 (tabulková část)
The data in the RD&I IS for the period 2009-2013 show that there were 205 ‘research-active’ Research Organisations accounting for a total of 380 EvUs, i.e. ‘organisational units’ registered in the RD&I IS that produced research outputs (Exhibit 26).

The public HEIs registered 204 EvUs in the RD&I IS in the period 2009-2013, i.e. more than half of the total number of EvU in the RD&I system. The public HEIs therefore constitute the major cost item for the Evaluation Methodology.

Exhibit 26 Breakdown in RO categories of the RO and EvU research-active in 2009-2013

<table>
<thead>
<tr>
<th>RO category</th>
<th>Nr of RO</th>
<th>Nr of EvU</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScRO</td>
<td>114</td>
<td>289</td>
</tr>
<tr>
<td>ASCR</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Public/state HEI</td>
<td>29</td>
<td>204</td>
</tr>
<tr>
<td>Research hospital</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Other ScRO</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>IBRO</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>PSRO</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>NatRes</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Grand Total</td>
<td>205</td>
<td>380</td>
</tr>
</tbody>
</table>

Note: the 29 public/state HEI include the Institute for Postgraduate Medical Education
Source: RD&I IS, Technopolis calculation

4.3.2 The use of thresholds

All Research Organisations and Evaluated Units can participate in the National Evaluation of Research Organisations (NERO), on a voluntary basis and provided there is a minimum of critical mass.

The introduction of the minimum threshold for participation in the evaluation is to be set in the context of the Czech R&D system, characterised by a considerable fragmentation in the R&D system and a relatively high number of research organisations that are active only to a limited extent in research. A minimum level of research activities and research outputs are required to guarantee the robustness of bibliometric and statistical data analyses, and for the assessment as such.

The rulings are as follows:

- Overall, the minimum volume threshold for participation is set at 50 eligible research outputs over the evaluation period
- For the registration of a Research Unit, a minimum of 50 eligible research outputs in the field of the RU is required. This will be based upon the indications provided at the moment of registration of the research output in the RD&I Information System
- An EvU can apply also for the registration of an Interdisciplinary Research Unit (see Section 3.5.5, below). For Interdisciplinary Research Units a minimum of 50 eligible research outputs in two or more fields applies
- There is no maximum threshold and an EvU can register only one Research Unit per field. This implies that an EvU where all of the research is conducted in one field of research can register only one RU

The type of research outputs that are eligible for this count-out are the scholarly outputs, the non-traditional scholarly outputs and the IPR-related outputs as listed in Exhibit 31, below.
Non-participation in the evaluation exercise does **not** imply a total loss of institutional funding of research organisations. Similar to the case of Research Organisations that opt out of the evaluation, Research Organisations that lack the critical mass will not be entitled to the funding related to one of the 3 components of the new institutional funding system, i.e. the performance-based research funding component. We explain this in more detail in the Final report 2 - *The Institutional Funding Principles*.

The in-depth analysis on the effects of the thresholds that we performed in the context of this study showed that the level of the threshold on 50 outputs was appropriate. It also showed that the choice of eligible outputs does not constitute a discriminatory factor for applied research organisations.

Focusing only on the volume of registered outputs, i.e. the threshold for the participation of an EvU, Exhibit 27 shows in total 61 out of 380 EvUs, i.e. 16% of the EvU, would be excluded from the evaluation exercise. This includes 28 Research Organisations and 33 public HEI organisational units (EvU).

Readers that wish to be informed more on the topic are referred to the Typology of the Research Organisations and the Effects of the EM thresholds (Background report 2).

<table>
<thead>
<tr>
<th>RO Sub-cate</th>
<th>Number of excluded EvU</th>
<th>Number of included EvU</th>
<th>Total number of EvU</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCR</td>
<td>2</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>HEI – public/state</td>
<td>33</td>
<td>171</td>
<td>204</td>
</tr>
<tr>
<td>Research hospital</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>Other ScRO</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>IBRO</td>
<td>5</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>PSRO</td>
<td>6</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>NatRes</td>
<td>13</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>61</td>
<td>319</td>
<td>380</td>
</tr>
</tbody>
</table>

The scientific fields and their categorisation in disciplinary areas are based on the OECD field classification (see Appendix A to this report). The use of the OECD fields enables comparability and compatibility of field-related data with international data and data systems. A major advantage of the OECD FOS fields is also that they are broader than the ones currently used in the Czech system. The OECD classification categorises approximately 190 sub-fields into 36 fields and 6 disciplinary areas (instead of the 123 fields and 11 groups of fields currently used in the Czech system). There is a system in place to re-categorise data on research outputs in the RD&I Information system following the OECD structure.36

36 Appendix B to the report *The RD&I Information System as an information tool for evaluation* (Background report 10) shows the mapping of the fields currently used in the RD&I Information System (IS) to the OECD categorisation.
4.4 The evaluation method

The National Evaluation of Research Organisations (NERO) will be implemented through a process of informed peer review, i.e. expert evaluation panels will base their assessment on the information provided by the evaluated RUs, in particular their self-assessment, and bibliometric data.

The evaluation is entrusted to international experts, structured in Main panels and Subject panels or acting as referees.

- There will be 6 Main panels, organised at the level of disciplinary area, and 24 to 26 Subject panels, organised at the level of field. Referees will assess submitted research outputs and will work at the level of sub-field
- The Main panel will have a Chair and 3 additional members
- Subject panels need to be small and high-level. Our recommendation is to keep the number to 5 max 6 members per panel

We cover the structure, profile and tasks of these panels and their members in detail in Section 5.1, below.

Peer review and panel evaluations have their roots in the culture of science itself, where the use of peers for judgment on quality is a long-standing practice. Peers conduct research project appraisals (both ex ante and ex post) across basic and applied research and development as well as for the assessment of scientific quality in connection with the publication of articles and scientific papers.

Peer review, as any other method, has its weaknesses and we have established the following to compensate for them:

- The use of bibliometrics to inform the panels means that they have access to a greater body of evidence than would otherwise be available to them and can also mitigate some of the sources of potential bias that can occur in panel reviews, as mentioned in Section 3.3.3, above
- Based on international practice in peer and panel review, and taking into consideration the context in the Czech Republic, we have articulated a set of rules and processes intended to ensure the proper functioning of the panels. We cover this more in detail in Section 5.3, below.

The reviews of the submitted research outputs will be done remote. In a first instance, also the panel members will perform a remote assessment of the Research Units; the outcomes of these remote assessments will then be discussed in the panel meetings leading to the final assessment outcome. This two-step approach is increasingly common practice in the international environment; it reduces costs and sets a lower level of time required from the evaluation panel members, which is a typical barrier for the involvement of potential experts in panel evaluations.

In order to limit the costs of the evaluation exercise as well as the burden on the evaluated RUs, the current EM does not foresee the inclusion of on-site visits. Site visits are a regular feature in institutional evaluations where the in-depth assessment requires closer contact with the evaluated subjects and an understanding of the concrete research conditions in the institutional environment. In national evaluations, however, they are extremely rare because of the scale of these exercises and the significant costs they imply.

Site visits enable a direct contact between evaluators and evaluated subjects, which enables for a smoother communication between the two parties, focused on the factors that enable or hinder good research performance in the specific institution. In this context, implementation of an (additional) institutional evaluation including site visits may constitute an appropriate follow-up of the national evaluation, focused on research organisations that showed a poor performance in the national evaluation.
4.5 The assessment criteria

The National Evaluation of Research Organisations uses a single framework for the assessment of all scientific disciplines and RO types, no matter their size, thereby ensuring full comparability of the evaluation results across all dimensions. Comparability is a fundamental condition for the use of the evaluation results in the performance-based research funding system as it is currently designed. A starred quality level should have the same value for all RUs evaluated and the assessment should base itself on the same set of indicators and information.

In principle the assessment criteria are relevant for all types of RO, no matter what type of research they conduct or the field in which they are active. Indicators included cover the conditions that enable for quality research to occur in any type of research organisation (research management, strategy, collaboration for research at international and national level), the key factors that can indicate the quality of the overall research performance (research output and competitiveness in research), and the activities that constitute pathways to impact – on research and the society at large. A potential exception is the criterion ‘scientific research excellence’, which may be of little relevance for some non-scientific research organisations – but surely not for all.

However, scientific fields exhibit significant differences in the way they conduct research and within those fields, the different types of Research Organisations differ in their roles and missions. These differences will be taken into account at the very first stage of the evaluation process, during which the evaluation panels will implement a calibration exercise. They will decide on the field-specific interpretation of key terms used in the assessment criteria and on the importance of the main sub-criteria for the different types of research organisations. This will be expressed in the form of % weights for the sake of simplicity, but the overall judgment will not be based on arithmetic. The panel members can also decide that all sub-criteria are equally important.

Readers desiring more information on the process of the calibration exercise are referred to the Guidelines for the evaluation panels in the Evaluation Handbook (Background report 5).

4.5.1 The context for the assessment criteria: the policy objectives

The evaluation is structured around five assessment criteria that jointly enable the fulfilment of the strategic objectives of the evaluation and funding system, i.e. to reward excellence in research while building capacity, in research and for innovation (
Final report 1: The R&D Evaluation Methodology

Exhibit 28). These criteria were defined bearing in mind also that the evaluation results need to inform the PRFS. For this reason, we paid particular attention to the creation of incentives for the ROs to improve their performance while rewarding excellence.
The R&D Evaluation Methodology

Exhibit 28 Assessment criteria in response to the policy objectives

<table>
<thead>
<tr>
<th>Objective category</th>
<th>Objectives</th>
<th>Assessment criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D capacity</td>
<td>To improve research and development management, at all levels</td>
<td>Research environment</td>
</tr>
<tr>
<td></td>
<td>To improve human resource development, reflecting the needs of the knowledge economy of the CR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To strengthen cooperation between the RD&I actors at the national level</td>
<td>Membership of the global and national research community</td>
</tr>
<tr>
<td></td>
<td>To strengthen international cooperation</td>
<td></td>
</tr>
<tr>
<td>Excellence in R&D</td>
<td>To motivate research organisations (ROs) to excellence</td>
<td>Scientific research excellence</td>
</tr>
<tr>
<td></td>
<td>To motivate ROs for collaboration with industry</td>
<td>Overall research performance</td>
</tr>
<tr>
<td>Societal relevance</td>
<td>To motivate ROs for the transfer of knowledge to practice</td>
<td>Societal relevance</td>
</tr>
<tr>
<td></td>
<td>To stimulate ROs to research corresponding to the needs of society and the business sector</td>
<td></td>
</tr>
</tbody>
</table>

Note: the term ‘societal’ refers to all sectors in society, including industry, education, and the society at large

4.5.2 The assessment criteria in detail

Exhibit 29 gives the overview of the assessment criteria and sub-criteria defined for the National Evaluation of Research Organisations.

The formulation of these criteria, i.e. the description of the values for the 5-point scale starred quality levels, is inspired by international practice, but has been adapted to the realities of the Czech R&D system, with an attention to guarantee a sufficient spread of the quality. An exception is the assessment of scientific research excellence.

In this section we describe each assessment criterion, the values for the attribution of starred quality level, the main topics of investigation, and the factors and information to take into account.

Exhibit 29 Assessment criteria and sub-criteria

<table>
<thead>
<tr>
<th>Assessment criteria</th>
<th>Sub-criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research environment</td>
<td>The quality of the research management (including HR management)</td>
</tr>
<tr>
<td></td>
<td>The adequacy of the research strategy</td>
</tr>
<tr>
<td>Membership of the global and national research community</td>
<td>International research presence and collaboration</td>
</tr>
<tr>
<td></td>
<td>National research presence and collaboration</td>
</tr>
<tr>
<td>Scientific research excellence</td>
<td></td>
</tr>
<tr>
<td>Overall research performance</td>
<td>Research output (including quantity and overall quality)</td>
</tr>
<tr>
<td></td>
<td>Competitiveness in research</td>
</tr>
<tr>
<td>Relevance for society</td>
<td></td>
</tr>
</tbody>
</table>

The five assessment criteria are not independent. A (good) research environment, in particular (good) management, is the basis for (good) overall research performance while overall research performance is one basis for societal relevance and scientific
research excellence. Societal relevance requires (good) overall research performance because societal relevance based on low-quality research is useless. Scientific research excellence may occasionally thrive without good overall research performance but this is rare and not normally sustainable. Finally, overall research performance and scientific research excellence are the basis for membership in the research community. The interconnectedness between the assessment criteria shows the fundamental role of research environment, in particular management, and overall research performance.

Research environment

For this criterion, the focus of analysis is on those conditions in the institutional environment that set the basis for the conduct of quality R&D, now and in the future, i.e.

- The quality of the research management
- The adequacy of the research strategy, its feasibility and sustainability

In the course of the calibration exercise, the panel members will discuss and define the importance to be attributed to the 2 sub-criteria, in *the field and for the types of RO*.

<table>
<thead>
<tr>
<th>Starred quality level</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 | Outstanding | **The RU is a Global Leader**
In terms of the quality of the research strategy and management, the Unit’s research environment is fully comparable to that of global leaders in the field. It can attract the highest quality international researchers |
| 4 | Very good | **The RU is a Strong International Player**
The Unit is able to provide an internationally comparable excellent research environment to high-level international researchers in the given field |
| 3 | Good level | **The RU is a Strong National Player**
The Unit is able to provide a research environment that is comparable with internationally recognised research organisations in the field |
| 2 | Adequate | **The RU is a Satisfactory National Player**
The Unit’s research environment is still evolving to achieve a level that is expected in the international research community of a respected research organisation in the field |
| 1 | Poor | **The RU is a Poor National Player**
The Unit is still only in the process of creating an internationally comparable research environment |
| Unclassified | N/A | In this criterion, ‘global’, ‘international’ and ‘national’ refer to quality standards. They do not refer to the geographical scope of the strategy or management activities. |

The panel members will base their judgment against this criterion on quantitative and qualitative data related to

For the assessment of the research management:

- The *research capacity*, including the longer-term financial resources stability, the size of the institution (does it have critical mass), the age of researchers, the ratio of PhD students involved in research versus FTE researchers
- Quality of *Human Resources (HR) management*: the processes for career development (appraisal and monitoring systems, competency framework, frequency of performance reviews and the employees’ feedback, promotion
criteria and individual targets), the level of inbreeding as an expression of the ‘openness’ of the RU

• (Only for the RU that in practice teach and train PhD students and the HEIs) The career development of postdocs and PhDs: the support to early-career researchers, objectives and outcomes of the PhD programme, approach to PhD supervision, educational components for the training of the PhD students, the attention for gender

• The capability of the research organisation adequately to support research in the field. This includes the availability of technical staff, the nature and quality of the research infrastructure, the level of investments in its renewal, the RU’s shared or collaborative use of research infrastructure, the RU’s capacity to gain competitive access to major research infrastructure and facilities

For the quality of the research strategy:

• The description of the RU research plan, its main objectives and activities

• The competitive positioning of the RU in terms of focus and field(s) of activity and how it intends to improve it

• The intended use of resources (human, financial, equipment) and how the RU intends to combat the RU weaknesses and exploit the strengths

• The alignment of the RU strategy with the strategies and research priorities at the national level

Membership of the global and national research community

The assessment will focus on

• Level of participation and recognition of the RU at the international level, and

• Level of participation and recognition of the RU at the national level

In the course of the calibration exercise, the panel members will discuss and define the importance of these 2 sub-criteria, in *the field and for the types of RO.*

<table>
<thead>
<tr>
<th>Starred quality level</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>The RU is a Global Leader
The Unit participates and is recognised in excellent international networks involving global leaders in the field.</td>
</tr>
<tr>
<td>4</td>
<td>Very good</td>
<td>The RU is a Strong International Player
The Unit participates and is recognised in international networks in the field.</td>
</tr>
<tr>
<td>3</td>
<td>Good level</td>
<td>The RU is a Strong National Player
The Unit participates and is recognised in excellent national networks involving national leaders in the field.</td>
</tr>
<tr>
<td>2</td>
<td>Adequate</td>
<td>The RU is a Satisfactory National Player
The Unit participates and is recognised in national networks in the field.</td>
</tr>
<tr>
<td>1</td>
<td>Poor</td>
<td>The RU is a Poor National Player
The Unit has little to no substantive collaboration.</td>
</tr>
<tr>
<td>Unclassified</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
The panel members will base their judgment on quantitative and qualitative data related to

The positioning of the RU at the international level, including

- The *intensity and quality* of the collaborations: the profile and prestige of the partner organisations, incoming and outgoing study visits, the geographical distribution of the partner organisations, the level of co-publications
- *International competitiveness:* the capability successfully to participate in international competitive projects, the competitive use of major international research infrastructure
- *Esteem:* the interest of the international conferences organised by the RU for an international audience, membership of international editorial boards of journals

The positioning of the RU at the national level, including

- The *intensity and quality* of the collaborations: the RU involvement in centres and research infrastructure in the country, the focus and diversity of research collaborations and partnerships, national co-publications, the shared or collaborative use of RI
- *National competitiveness:* the capability successfully to participate in national competitive projects
- *Esteem:* scientific awards and memberships of scientific advisory boards in academia

Scientific research excellence

This criterion assesses scientific research *excellence*, i.e. the quality of the RU research output against the *highest* international standards. It aims to reveal “pockets of excellence” in the Czech research community by assessing to what extent the RUs have the capacity to deliver outstanding research outputs. It also serves as an indicator of the RUs’ potential level of competitiveness on the international scene of scientific research.

During the calibration exercise, the panel members will define the *field-specific interpretation* of the terms *originality*, *significance* and *rigour* prior to the review by the referees.

<table>
<thead>
<tr>
<th>Starred quality level</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>The RU is a Global Leader In terms of originality, significance and rigour, the Unit’s research output is comparable with outstanding work internationally in the field. The research possesses the requisite quality to meet the highest international standards of excellence. Work at this level can be a key international reference point in the field. The RU output profile is comparable to the one of the best international research organisations in the field.</td>
</tr>
<tr>
<td>4</td>
<td>Very good</td>
<td>The RU is a Strong International Player In terms of originality, significance and rigour, the Unit’s research output is comparable with excellent work internationally. The research nonetheless does not yet meet the highest standards of excellence. Work at this level can arouse serious interest in the international academic community. The RU output profile is comparable to the one of very good international research organisations in the field.</td>
</tr>
<tr>
<td>3</td>
<td>Good level</td>
<td>The RU is a Good International Player In terms of originality, significance and rigour, the Unit’s research output</td>
</tr>
</tbody>
</table>
The R&D Evaluation Methodology

is comparable with the best work internationally. The research possesses the requisite quality to meet high international standards. Internationally recognized publishers or journals could publish work of this level. The RU output profile is comparable to the one of good international research organisations in the field.

2 Adequate The RU is a Good National Player with Some International Recognition
In terms of originality, significance and rigour, the Unit’s research output is comparable with good work internationally. The research possesses the requisite quality to meet international standards only to a certain extent. The RU output profile is comparable to the one of modest international research organisations in the field.

1 Poor The RU is a Poor National Player
In terms of originality, significance and rigour, the Unit’s research output falls below the international quality standards. The RU output profile is not comparable to the one of modest international research organisations in the field.

Unclassified N/A

In this criterion, ‘Global’, ‘International’ and ‘National’ refer to quality standards. They do not refer to the geographical scope of the research outputs and/or publication channels.

We designed a three-stage process with a clear division of roles for the panels versus referees:

- The two referees assess the research outputs and assign to each submitted scholarly output a starred quality level, accompanied by an explanatory statement
- The panel member(s) expert(s) in the field assign(s) the final starred quality level for each submitted scholarly output
- Based on the average scores for all submitted scholarly outputs, the subject panel decides on the final starred quality level for the RU

Overall research performance

The panels will assess the RU overall research performance looking into

- The research output, including productivity
- The RU competitiveness in research

In the course of the calibration exercise, the panel members will discuss and define the importance of these 2 sub-criteria, in the field and for the types of RO.

<table>
<thead>
<tr>
<th>Starred quality level</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
</table>
| 5 | Outstanding | The RU is a Global Leader
In terms of research output and competitiveness, the Unit’s overall research performance is internationally excellent, i.e. at the level of the best international research organisations in the field. |
| 4 | Very good | The RU is a Strong International Player
In terms of research output and competitiveness, the Unit’s overall research performance is optimal, i.e. at the level of very good international research organisations in the field. |
| 3 | Good level | The RU is a Strong National Player
In terms of research output and competitiveness, the Unit’s overall research performance is at a good standard. |
| 2 | Adequate | The RU is a Satisfactory National Player |
In terms of research output and competitiveness, the Unit’s overall research performance is at an acceptable standard.

<table>
<thead>
<tr>
<th>Poor</th>
<th>The RU is a Poor National Player</th>
</tr>
</thead>
<tbody>
<tr>
<td>In terms of research output and competitiveness, the Unit’s overall research performance is poor.</td>
<td></td>
</tr>
</tbody>
</table>

In this criterion, ‘global’, ‘international’ and ‘national’ refer to quality standards. They do not refer to the geographical scope of the research activities.

The panel members will base their judgment on quantitative and qualitative data related to

For the assessment of the research output:

- Research productivity: the production of research outputs versus the size of the research unit in terms of FTE researchers (including PhD students in case their publications are assigned to the RU)
- The publication profile of the RU, including the trends in publication and types of research outputs, the use of national/international journals and type of publication channels, the citation impacts. These bibliometric data will be considered in absolute and relative terms, i.e. set against the field total in the CR
- The value of the RU activities for the advancement of research (self-assessment)

For the assessment of the RU competitiveness in research:

- The capacity to gain external funding, i.e. competitive funding and contract research - from international and/or national sources
- The reputation of the RU in the research community, expressed in its ability to attract PhD students
 - For the RU that in practice train PhD students: the number and trends of PhD students trained and the level of investment in PhD training (PhD students versus FTE researchers)
 - For the HEIs: the number and trends of PhD students enrolled, level of investment in PhD training (PhD students versus FTE researchers), and the effectiveness of the PhD education and trend (ratio PhDs awarded/PhD students enrolled)
- The national and international competitive positioning of the RU (self-assessment)

Societal relevance

The panels will assess the societal relevance of the RU activities in terms of their reach and significance, considering the RU knowledge and technology transfer activities and impacts - to the benefit of industry and/or the public sector and other societal actors.

Prior to the assessment, the panel members will define the field-specific interpretation of the terms reach and significance.

<table>
<thead>
<tr>
<th>Starred quality level</th>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>Work in the RU has a Very High Potential for Societal Impacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In terms of reach and significance, the RU is an important driver of societal development. The RU’s collaborations and/or interactions with</td>
</tr>
</tbody>
</table>
non-academics (i.e. business, policy-makers, the public) stand out in terms of their extensive and dynamic nature.

<table>
<thead>
<tr>
<th>4</th>
<th>Very good</th>
<th>Work in the RU has a High Potential for Societal Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Good level</td>
<td>Work in the RU has a Good Potential for Societal Impacts</td>
</tr>
<tr>
<td>2</td>
<td>Adequate</td>
<td>Work in the RU has a Low Potential for Societal Impacts</td>
</tr>
<tr>
<td>1</td>
<td>Poor</td>
<td>Work in the RU has Little to No Potential for Societal Impacts</td>
</tr>
</tbody>
</table>

'Societal' impacts refer to impacts on the economy and social welfare, the latter including health, environment, culture, social inclusion, education and gender.

The panel members will base their judgment on quantitative and qualitative data related to

- The intensity and quality of the knowledge and technology transfer
 - *To the benefit of industry:* the collaboration with industry, membership of advisory boards, the volume of competitive & contract research with/for industry, income from the commercialisation of research outputs, IPR-related outputs (patents) and the geographical distribution of the patent offices, participation in incubators or clusters, the profile of the industry partners and/or clients, the use of research outputs in the industry/business environment
 - *To the benefit of the public sector or other societal actors:* the volume of competitive & contract research with/for the public sector or other societal actors, the publication of non-traditional scholarly outputs, the profile of the societal actors supported, the use of media channels, the implementation of other outreach activities (activities to the benefit of schools, NGOs, amateur associations like arts, reading or writing groups, local history societies, museum-goers, tourists, etc)

- The creation of spin-off companies
- The value of the RU research activities for society (self-assessment)

4.6 The indicators for the data collection

We selected the indicators to be used in the EM with a set of simple guidelines in mind. The final set of indicators

- Is based on our knowledge of international practice and on the value of specific input, output, process and system indicators as outlined in Section 3.6, above
The R&D Evaluation Methodology

- Takes into account data availability, in particular in the Czech RD&I IS, in order to promote cost efficiency
- Constrains to the degree of complexity, fairly simple and understandable to the research community and the broader public
- Focuses on indicators that are reliable and data that is verifiable
- Is fair in its coverage of indicators that are of relevance to the different scientific disciplines and research organisation typologies
- Takes into consideration potential gaming - to the extent possible
- Considers the potential effects of the indicators on the Czech R&D system
- Takes a comprehensive approach: it covers research quality from a scientific perspective as well as in terms of societal relevance, and considers the quality of the research environment
- Last but not least: is composed of a mix of quantitative and qualitative data allowing for triangulation

The variables used for the quantitative data and their analysis will give the panels a view on

- Trends over the years in the evaluated period
- The positioning of the RU in the EvU and the field (share of the RU in the EvU; share of the RU in the field)

In the remainder of this section we cover some specific aspects related to the indicators used, i.e. the use of an indicator mix allowing for triangulation, the calculation of FTE researchers and the challenges it presents, thresholds and rulings for the research outputs, bibliometric indicators, and some final considerations on how to deal with the limits in bibliometric data availability for some fields of science.

4.6.1 A mix of quantitative & qualitative data allowing for triangulation

In the description of the assessment criteria above, we gave an overview of the main indicators that will provide the information for the assessment against each criterion. They cover the broad range of indicator typologies and encompass a mix of quantitative and qualitative data. These two types of data complement each other in providing the panels with a comprehensive view of an RU’s profile and performance. They also act as a control mechanism on the quality of the information provided: quantitative data can confirm or contradict qualitative statements and vice-versa. This approach therefore reduces the potential effects of gaming – and therefore indirectly the phenomenon itself.

Last but not least, qualitative information in the form of self-assessments, performed by the researchers and their management that are effectively involved in the RU, is of great importance in particular in the absence of on-site visits.

The robustness of the assessment is ensured also by the use of multiple data to inform the panels against a specific criterion. As with the assessment criteria, the indicators used are interconnected. Several of the quantitative indicators will provide the panels with information that will be of use against multiple assessment criteria and are therefore collected in a consistent manner throughout the evaluation exercise. Many of these indicators provide information against various criteria and enable for triangulation of the information. We illustrate this concept in Exhibit 30, below.
The R&D Evaluation Methodology

Exhibit 30 Mix of qualitative and quantitative indicators informing the assessment criteria

<table>
<thead>
<tr>
<th>Indicator category</th>
<th>Quantitative</th>
<th>Qualitative</th>
<th>Main Indicators</th>
<th>Research environment</th>
<th>Membership of the global & national research community</th>
<th>Scientific research excellence</th>
<th>Research performance</th>
<th>Societal relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Research management</td>
<td>Research strategy</td>
<td>International research presence and collaboration</td>
<td>National research presence and collaboration</td>
<td>Peak quality of the scholarly outputs</td>
</tr>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>External funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Research capacity</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Infrastructure for research</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Research strategy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Human resource development</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td></td>
<td></td>
<td>Reputation and esteem</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>PhD education & training</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>International citations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systemic</td>
<td></td>
<td></td>
<td>International mobility</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>International collaborations & partnerships</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>International co-publications</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>National collaborations & partnerships</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>National co-publications</td>
<td></td>
<td>XX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research outputs</td>
<td></td>
<td></td>
<td>Research outputs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Use of national/ international journals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts</td>
<td></td>
<td></td>
<td>Licence income</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
<td>Spin-off companies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.6.2 FTE researchers

Somewhat surprisingly for an international observer, the definition of the size of an RO in terms of FTE researchers is not a straightforward matter in the Czech RD&I system. Factors that make this exercise particularly cumbersome are:

- There is no central registry of researchers in public organisations
- The data on FTE researchers in a single research organisation differ substantially depending on the sources used
- By law, employers are not allowed to investigate double or even triple full-time occupations of their employees. As a result, there are no official data on this common phenomenon
- Some PhD students may have a contract to conduct research (in addition to their student grant) and in the HEI they are at that point officially counted into the FTE figures
- Some HEI count in also employees that would normally be categorised as technicians
- There is no consensus in the research community on how much time a university professor spends on average in teaching versus research, nor is this topic a component of the employment contracts

As a result, this is an indicator at high risk for gaming. We managed this risk as follows:

- Based on the experience gained in the Small Pilot Evaluation, in the Guidelines for the evaluated ROs (see the Background report) we give precise definitions for the different job titles and functions in the research organisations, based on existing definitions in the different research organisations and/or used by the Czech Statistical Office
- We ask for Headcounts and FTE numbers on researchers – at the overall EvU level and for each RU. Because each researcher in an RU has to be registered in an RU and can be registered only once, the sum of the data for the RUs constitute 100% of the data for the EvU
- We underline that the number FTE researchers should be calculated in line with the indications from the Czech Statistical Office, i.e. taking into account only the ‘real’ working time that is dedicated to research
- We ask for Headcounts and FTE numbers of PhD students that are included in the ‘official’ number on researchers. The concept is that technicians and PhD students should not be considered ‘researchers’
- The data will be checked on consistency by the evaluation management team

The use of the same FTE researcher data, i.e. as indicated by the Research Units, for the translation of the evaluation scores into funding will also create a correction mechanism. It implies that there are two opposite forces that discourage EvUs from over- or underestimating the number of FTE researchers: on the one hand, overestimation of FTE researchers will lead to a lower achievement for overall research performance (the more FTE researchers for the same research output, the worse the score for performance); on the other hand, underestimation of FTE leads to lower institutional R&D funding.

Quite obviously, these risk management measures will increase the burden on the evaluated RO, in particular the Higher Education Institutions. Most important, the correction mechanism is far from optimal.
The R&D Evaluation Methodology

We therefore urge the Czech RD&I community to tackle this issue and reach an agreement for a **standard definition** of a FTE researcher and the processes for the calculation. Based on international practice, potential solutions are:

- Reaching a consensus for the average time spent for research versus other activities such as teaching in the different types of research organisations or introduce the concept of teaching versus research time indications in the staff contracts
- Introducing the specification of the time to be spent for research in the employment contracts and store the data in a registry at institutional or national level

4.6.3 Research outputs: eligibility and other rulings

The EM selected a specific set of research outputs that can be taken into account for the calculation of the minimum research volume for participation in the NERO, the calculation of research productivity for the assessment of research outputs, and the submission of the most outstanding research outputs for peer review. These research outputs are listed in Exhibit 31, below.

Exhibit 31 Research outputs eligible for the research excellence and research output assessment criteria

<table>
<thead>
<tr>
<th>Scholarly outputs</th>
<th>Threshold for participation</th>
<th>Research output</th>
<th>Scientific research excellence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Papers in peer-reviewed journals (J)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Conference proceedings (D)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Monographs, books and book chapters (B), provided they are identified with an ISBN number</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-traditional scholarly outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Results used by the funding provider, i.e. projected into legislation or norm, projected into non-legislative or strategic documents (H)</td>
<td>X</td>
</tr>
<tr>
<td>Research report containing classified information (V)</td>
<td>X</td>
</tr>
<tr>
<td>Certified methodologies, art conservation methodologies, specialized map works (N)</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patents and other IP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents and patent applications (P)</td>
<td>X</td>
</tr>
<tr>
<td>Plant/ breeders rights (Zodry & Zplem)</td>
<td>X</td>
</tr>
</tbody>
</table>

Notes: the definition of the research outputs is as listed in the Methodology of Evaluation of Research Organisations and Evaluation of Finished Programmes (valid for years 2013-15, Office of the Government of the Czech republic, File No.: 1417/2013-RVV

Specific rulings related to the **research output** and **threshold** calculations are:

- Books will count as 4 research outputs
- Co-publications of researchers active in the same EvU will be de-duplicated (i.e. counted once)
- Co-publications of researchers active in different EvUs will be counted as one each, thus keeping the incentive for collaborations among the research organisations
For the assessment of **scientific research excellence**, we established upper and lower limits for the number of 'most outstanding' scholarly outputs that the Research units can submit:

Each Research Unit will submit for review a number of research outputs that accounts for minimum 1% and maximum 2% of the total number of scholarly outputs by the researchers in the Research Unit over the evaluation period - but however no less than 3 and no more than 20.

For example,

- A research unit that has published in total 1000 scholarly outputs from 2009 until 2014 can submit between 10 to 20 research outputs for review
- A research unit that has published 100 scholarly outputs should submit 3 outputs for review
- A research unit that has published 3000 scholarly outputs should submit 20 outputs for review

The rationale for the **choice** of eligible research outputs lies in the recent experience in the Czech Republic related to the reliability of data on research outputs.

The **Metodika 2013-2015** considerably restricted the types of outputs that previously were eligible in response to critique in the research community that many of these outputs were subject to a significant level of gaming. There was a general lack of trust that the registered research outputs were 'real' and effectively constituted research, despite various control mechanisms. In the context of a PRFS where research outputs constitute the only criterion, the issue is quite obviously serious. The approach taken was to include only verifiable (and verified) research outputs.

We felt that inclusion of types of research outputs beyond the ones included in the **Metodika 2013-2015** needed to provide sufficient guarantees that the risk for a repetition of the 'old problem', i.e. gaming, was minimal or however acceptable.

In order to ensure a fair coverage of research outputs also for research organisations beyond academia, also a small number of non-traditional scholarly outputs were included. These outputs were selected on the basis of the reliability of their verification process, which is linked to their registration in external databases. The inclusion of the **V-type** non-traditional output was needed to cover security research.

A methodological consideration was also that while bibliometric data can provide information about the quality of scientific research outputs (i.e. scholarly publications), the quality of outputs in the applied research sphere is shown through its value for future development (e.g. for industry R&D) and the uptake by or importance for the users.

Nevertheless, the research production of Research Organisations conducting applied research is broader than the types of research outputs currently covered. Hence, the inclusion of a broader range of research outputs for the assessment of Research Productivity would be **appropriate** for an improved fairness of the EM. We do not propose it in the EM because acceptance of such broader coverage by the whole RD&I community in the Czech Republic will depend on

- The understanding that quantitative data have only a relative importance in the Evaluation Methodology and that there is no direct linking between these data and the panels’ judgment on scores. Hence, quantitative data do not define funding allocations
- The improvement of the definitions for these types of research outputs, in particular software

Once these conditions are fulfilled, also the broader set of applied research outputs can **and should** be eligible for the volume calculations in relation to the research productivity criterion.
4.7 Data sources for the evaluation

The expert panels will form their judgment based on data provided directly by the evaluated Research Units as well as on the basis of metrics collected in a Bibliometric Data Report. Sources for these bibliometric data are the RD&I Information System and the international bibliographic databases (Web of Sciences and/or Scopus).

In the sections below we first provide information on the data that the evaluated Research Units will provide. In Section 4.7.2 we describe the bibliometric data, while we cover the use of the RD&I Information System for evaluation purposes in Section 4.7.3.

4.7.1 Data provided by the evaluated Research Units

The evaluated RUs and the quantitative and especially qualitative information that they are requested to provide are a key source of information for the evaluation panels.

Quantitative data regard the data on the number of research personnel and PhD students enrolled or trained, as well as data on external funding (competitive and/or contract research) and income gained from the commercialisation of research outputs.

There are also four types of **qualitative data** that the evaluated RUs will provide:

- **Background information** on the Evaluated Unit and the Research Unit(s) (organisational structure, scientific focus, history). This information will not be appraised; it provides context and understanding to the other evaluation material

- **Descriptions of processes or activities in the RU**, such as the approach for HR management, the use of research infrastructure, the research strategy, collaborations and partnerships with other national or international research organisations and esteem measures, and the knowledge and technology transfer activities to non-academic actors in society

- **Self-assessment** of the adequacy of the research infrastructure in the Evaluated Unit for research in the field; the key value and relevance of the RU activities for research and development; the RU competitive positioning in the national and international context; and the societal value of the RU activities and research

- A final **SWOT analysis and conclusions**, including a perspective for the future. Also in this case, the information will not be appraised. As a final step in the self-assessment process, it will provide the evaluation panel with an improved understanding on the RU performance and the RU perspective, enriching in particular the panel’s recommendations for future development

The **Evaluation Handbook** (Background report 5) holds the Guidelines for the Research Organisations where more detailed information is provided on the data input requested for the evaluation.
4.7.2 Bibliometric indicators

The selection of the bibliometric indicators was based on the following criteria:

- The purpose of informing field specific panels in the best possible way
- Relevance for the institutional level of evaluation
- Well-established international practice in the field
- Availability, compatibility and transparency in relation to the chosen data sources

The indicators are calculated and presented per OECD field. The indicators can also be aggregated (weighted for average citation rates) up to major area, research organizations, and country.

The bibliometric indicators are grouped in three main categories: Publishing Profile, Citation Impact, and Collaboration (Exhibit 32). While the data related to the ‘publishing profile’ and ‘citation impact’ inform the panels for the assessment of the research output, data related to ‘collaboration’ inform the assessment against the ‘Membership of the RD&I community’ criterion.

The report Bibliometrics on and for the Czech Republic (Background report 3) holds more details on these indicators as well as the template for the Bibliometrics Data Report.

Exhibit 32 List of bibliometric indicators

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publishing profile</td>
<td>Number of publications in RD&I IS categories: articles in peer-reviewed journals (type J); monographs (type B); book chapters (type C - includes Articles in Books and Chapters in Books); Proceedings papers (type D)</td>
</tr>
<tr>
<td></td>
<td>Percentage Web of Science/Scopus publications among all peer-reviewed RD&I IS publications</td>
</tr>
<tr>
<td></td>
<td>Number and percentage publications in each field as an indicator of the research profile of the RU</td>
</tr>
<tr>
<td></td>
<td>Number of Web of Science publications in the document types: Article (incl. combined with other types); Review; Letter.</td>
</tr>
<tr>
<td></td>
<td>Mean and median number of authors and addresses per WoS publication</td>
</tr>
<tr>
<td></td>
<td>Percentage WoS/Scopus publications in the most cited 10 per cent and 25 per cent of the journals in the field (counted from the top by the number of articles in the field), based on Journal Impact Factor in the latest edition of Journal Citation Reports</td>
</tr>
<tr>
<td>Citation impact</td>
<td>Field Normalized Citation Impact (world, EU28)</td>
</tr>
<tr>
<td></td>
<td>Number and percentage publications among the top 10%, and 25% most cited publications (world, EU28).</td>
</tr>
<tr>
<td>Collaboration</td>
<td>Percentage WoS/Scopus publications exhibiting international collaboration in the addresses</td>
</tr>
<tr>
<td></td>
<td>Five most frequent collaborating countries in the field, and their shares of the publications in field</td>
</tr>
<tr>
<td></td>
<td>Field Normalized Citation Impact of articles in each country relation</td>
</tr>
<tr>
<td></td>
<td>Percentage WoS/Scopus publications exhibiting national collaboration among Czech institutions in the addresses</td>
</tr>
<tr>
<td></td>
<td>Five most frequent collaborating institutions in the field, and their shares of the publications in the field</td>
</tr>
</tbody>
</table>

In the bibliometric data report for the evaluation panels, these bibliometric data are complemented with ‘statistical’ information from the RD&I Information System.

These data give the panels a view on the trends in scholarly and non-traditional scholarly outputs during the evaluation period and set the publication profile of the Research Units in the context of the field in the CR. It also provides information on the potential reach of the journals in which the articles are published (national versus international), based upon the databases in which the journals are registered.
The RD&I IS also provides data on the IPR outputs, giving a view on the trends in patents and other forms of IP awarded during the evaluation period. The data set the information for the Research Units in the context of the field in the CR and give a view on the importance of the patents in terms of their geographical reach.

The panels will also be provided with the following listings:

- Listing of WoS journals in the fields of the Disciplinary Area, specifying each journal that contains more than 5 per cent of the total volume of Czech articles in the fields.
- Full list of publications by the RU, with links to the abstracts in English stored in the RD&I IS.

The RD&I Infom System stands out as a necessary supplementing data source, in particular for research in the social sciences and humanities, just as other current research information systems do in other countries.

The social sciences and humanities (SSH), partly also the engineering sciences, are so far insufficiently covered in commercial citation indexes Web of Science and Scopus. The situation has been improving during the last years (after the introduction of Scopus as a competitor), but both data sources are still far from covering scholarly publications on the national level, especially publications in books, to the extent that would be acceptable for evaluation purposes in these fields. Even international journals are still insufficiently covered in some the fields in the SSH.

Despite the availability of the RD&I IS as an information source, some problems remain. We list these below and explain how or to what extent they can be solved. In the first two paragraphs, the focus is mainly on SSH fields.

Partial coverage creating tensions among fields

As seen in Section 0, above, there are large variations in the coverage of the SSH fields in WoS. Scopus follows the same pattern of insufficiencies, although the coverage of each field there is broader.

The result is that some SSH fields may “feel at home” with the way their output is represented in citation data, and they may even regard citation indicators as useful and valid because it corresponds to their publishing and citing practices. Common examples are economics in the social sciences and general linguistics in the humanities. At the other extreme are fields, such as law or philology (except English philology), that rightfully can see themselves as misrepresented, and where citation indicators would be completely invalid. Even within a field, there may be differences. An example within political science is International Relations, which is well covered, and Local Government Studies, which is not as well covered.

It is important to see these differences as rooted in different publishing and citing practices, which again are more deeply rooted in the missions and methodologies of the research in the fields. Law or philology cannot be blamed for the insufficient coverage, neither can the companies that produce the citation data be blamed. This is important to note, because these data sources are often regarded as selecting the highest quality and most important journals for coverage. The producers also state that they follow certain quality when including new journals, but we also observe that expansion the journal list mainly happens in countries in parts of the world that represent new markets for the producers. From a European perspective, the impression is rather that the journal coverage in the SSH is a lottery.

To avoid creating tensions among fields in the SSH, it is important not to regard coverage in the commercial databases as an indication of research quality in a given field. Instead, less covered fields should be respected for their specific publishing pattern that is insufficiently covered. More sufficiently covered fields should on the other hand be respected for their increasing interest in citation indicators.
Accordingly, the indicator *Web of Science coverage* is not an indication of research quality in our methodology, but on the contrary, an indication that awareness should be taken if numbers are low.

Partial coverage – but the indicators are still invalid

Coverage in a citation database is not sufficient for the validity of some of the indicators we use:

- For the citation indicators, the references in typical citing documents must mainly relate to other recently publications that are also covered in the database. If this is not the case, the number of citations to a given publication, even if it is covered, will be very low and invalid as an indication of influence on further research.

- The indicator for the publishing profile that is based on journal impact factors does not give much meaning if citations can seldom be measured in the field (see above) and a large proportion of the publications in the field are not in journals covered by the data source.

- Collaboration indicators with data from co-authorship will not be valid in fields where there is usually one author per publication. The lack of co-authors abroad is in these cases not an indication of lack of collaboration.

In our methodology, we will not use the three mentioned (groups of) indicators in fields where we see them as invalid, even if the field is partially covered in the citation data.

More weight on qualitative judgment by peers and options for a more self-determined evaluation

A typical solution for the assessment of research in fields with insufficient coverage in the international databases (and thus bibliometric data) is to set more weight on the qualitative judgment by the peers.

In some countries, these considerations led to an additional set of submitted research outputs assigned for peer review in these fields. In other countries, the evaluators compensated with a more extensive analysis of the valid information at hand, such as the types of journals used, the profile of the conferences for which proceedings were registered etc. This is the function of the statistical information provided by the RD&I Information System and especially, the two annexes with the journal and publications listings in the bibliometric data report for the EM.

Some countries also tried to solve the issue by defining quality categories for journals published in the national language (and not indexed in the international databases) or for the conference proceedings, categories of the conferences (with or without peer review).

In Section 4.2.1 of the report *The RD&I Information System as an information tool for evaluation* (Background report 9) we refer to the experiences in Norway and Belgium with the creation of a master journal register categorising the publication channels. Such journal register allows for the identification of scholarly publications versus publications aimed at a broader non-scholarly audience, i.e. the distinction between communication for research and dissemination. It also opens up the possibility of distinguishing between quality levels in the journals, series, and the (book) publishers – similar to the ERIH levels of international versus national and local authorship.

We invite the Czech RD&I community to take account of this solution for a more self-determined evaluation of research in the fields of SSH – and beyond.
4.7.3 The use of the national RD&I Information System (IS)

The RD&I IS constitutes an important tool for implementation of the National Evaluation of Research Organisations. Apart of its value as a source for information on research outputs as outlined in the preceding section, it can also support the evaluated RU in the collection of the needed data on researchers, outputs and national competitive funding, which can reduce considerably the evaluation burden for the research organisations. It also is an important tool for the implementation of eligibility and data quality checks during the evaluation, as well as for the validation of data submitted by the RU.

No doubt the RD&I IS can be improved in order to maximize its value – for evaluation and as a source of strategic information. Updates and extensions that we see useful from this perspective include:

• An improved interlinking of the RD&I IS with external databases, in order to enrich the information available. Options are the bibliographic databases (WOS/Scopus) but also field-specific databases, such as PubMed for medical sciences or DBLP for computer science

• The inclusion of a standardized and dynamic register of scholarly journals, series and book publishers that allows for bibliometric analysis and a possible distinction between quality levels of publication channels

• The extension of extending existing components of the RD&I information system as well as adding new ones, such as researcher esteem indicators and profiles, data for the calculation of researchers Headcounts (HC) and FTE, or an Infrastructure Catalogue in three main categories: Facilities, Services and Equipment.

• A set of extensions in order to optimise its user-friendliness, efficiency, effectiveness, and most important, reliability.

Interested readers can refer to the report *The RD&I IS as an information tool for evaluation* (Background report 9) for more information.

4.8 Taking diversities into account

In this section we first give an overview of how the Evaluation Methodology took into account the specifics of the scientific fields and the differences in the missions of the Research Organisations. In Section 4.8.2 we explain the approach for the handling of interdisciplinary research.

4.8.1 The disciplinary cultures and missions of the Research Organisations

Field specifics are at the core of the evaluation methodology that we propose in this report. Subject panels made up of field experts are best placed to take account of the particularities of the scientific fields and differences among sub-fields as well as the characteristics of different types of research organisation, ensuring fair assessment. The fact that experts only assess research in their own field means that they can apply their field-specific understanding in order to translate particular patterns of evidence into judgements about performance that are universally recognisable within the overall research community.

Consideration of the field specifics is nonetheless sensitive in research assessments, and in particular in PRFS where the results drive a considerable proportion of institutional funding. The UK RAE/REF is an example of such a PRFS. Over time it has developed a highly nuanced approach by allowing the panels to take account of the field-specific characteristics of the generic indicators used for the assessments, as well as in certain cases admitting specific types of evidence for consideration in some fields but not in others (see Section 3.5.4, above).

While it seems appropriate not to adopt an overly detailed and resource-intensive approach, one aspect of the RAE/REF methodology of relevance for this study is the
extent to which panels are able to assign different amounts of importance to different types of indicators, based on their relevance to each particular field. The link from evidence to assigning assessment scores is judgemental and not based on arithmetic.

A reasonable level of freedom for the expert panels to define field-specific variations of the common generic criteria seems appropriate. Our proposal is therefore for the subject panels to implement a calibration exercise at the very start of the evaluation process. As mentioned in Section 4.5, above, this discussion during the first meeting of the subject panel should generate a common understanding of the indicators among the panel members and agreement about how these should be interpreted in the context of specific fields and research organisation types.

It will be the task of the main panel chairs to ensure coherence in the interpretation of the assessment criteria and their key words among the panels, so that, for example, a score 4 against the criterion 'research performance' has an equal value in physics as in social sciences, for any type of organisation.

While the scores against the different assessment criteria will therefore be 'field-neutral', the different missions of the research organisations will be taken into account in the second stage of the PRFS process, i.e. for the allocation of the funding. We explain this in further detail in the Final report 2 – The Institutional Funding Principles.

4.8.2 Inter-disciplinary research

We handled the issue of assessing inter-disciplinary research by

- Setting expertise in inter-disciplinary research or in application areas (for which different fields of disciplines are often combined or integrated) as one of the selection criteria for the Main and Subject panel Chairs and members
- Defining a limited set of Subject panels, covering broad fields of research
- Allowing for Research Units to flag work across fields within a single disciplinary area and to recommend cross-referrals among the Subject panels
- Allowing for the registration of Interdisciplinary Research Units in the case of interdisciplinary research in fields across disciplinary areas

The considerable fragmentation of research in the Czech Republic and the allocation of research outputs in the scientific fields by the researchers themselves upon registration imply a potential abuse of these opportunities offered. Clear boundaries and rulings are therefore required. These are:

Research Units that wish to recommend cross-referrals should

- Describe which part of their research is inter-disciplinary
- Explain the reasons for their recommendation, i.e. for which assessment criteria or sub-criteria cross-referral is recommended
- In addition to suggesting the field that is most relevant for the RU (the host field), the RU can mention up to two additional fields.

An EvU that has a strong element of interdisciplinary research in fields across disciplinary areas can apply for registration an Interdisciplinary Research Unit. It will need to make a convincing case that interdisciplinary research is a significant feature of the research in the IRU and demonstrate that there is a strategic connection and strong collaboration between the researchers active in the different fields. An Evaluated Unit can apply for the participation of Inter-disciplinary Research Unit in case it conducts at least 30% of its research activities across disciplinary areas.

Apart of a general statement explaining the reasons why the status of IRU is considered appropriate, information that must be submitted for this application must include the following three elements: data on research outputs/bibliometrics, the
scientific backgrounds of the researchers involved, and a statement of research strategy for the evaluated period.

The relevant Main panel Chairs will decide on the approval or refusal of the applications for an Interdisciplinary Research Unit (see also Section 5.1.4, below).

4.9 The evaluation results

The panel evaluations will result in the following reports:

- A panel report per RU
- An overview panel report for EvUs with more than 1 RU, prepared by the assigned subject panel chair
- A conclusive analytical report per field, prepared by the subject panel chair
- A conclusive analytical report per disciplinary area, prepared by the main panel chair

These reports will become public when the evaluation process is finalised.

The panel reports will entail the final score for the RU and an explanatory statement arguing the evaluation result against each assessment criterion, and conclusions and recommendations for the future development of the RUs in the context of their area of research and the national science and innovation system. This may include:

- The potential evolution of the research environment and infrastructure, including strategic management and operational issues and the composition of research staff
- Opinions regarding the potential for collaboration with other institutions and for interdisciplinary research

The panels will not combine the scores for the 5 criteria into a single score for each RU as an overall assessment result.

The reflections that led to this decision are the following:

- The risk for bias: the Evaluation Methodology covers all research organisations, with activities ranging from basic research to development. To a certain extent, these research organisations are set in competition with each other. In the Evaluation Methodology that we propose, this competition takes place against each of the 5 criteria separately. At this level, the risk for a bias in the judgment of the panel members due to their research profile is limited. Nobody will have difficulties in accepting that an RTO performs better in reaching societal relevance than a basic research institute.

The situation changes when an overall judgment of performance needs to be made. At that point, research organisations ‘compete’ against each other in terms of ‘quality in overall performance’. The risk for scholarly bias in favour of research organisations is high in those cases.

- The different contexts for the assessment criteria: the criterion on research environment, and in particular the research management sub-criterion, reflects the desire for performance assessment at the institutional level. Information on these ‘institutional conditions’ also gives the expert panels a view on the context in which the research is conducted.

37 See the Guidelines for the Research Organisations in the report Evaluation Handbook (Background report 5)
However, decision-making on the research management aspects takes place at different level in the various organisations involved in the evaluation. For the small non-university research organisations, it is at the level of the RU; for the larger organisations and the public HEI, the responsibility is at the level of the EvU.

As a consequence, the assessment of the research management is effectively an assessment of the RUs' performance in the smaller research organisations, similar to the other criteria. In the other cases, instead, it is an assessment of the management by the EvU, in contrast to the other criteria. In those cases, the aggregation of the scores against the different criteria will combine and compare apples and pears.

A maximal use of the evaluation results from a formative perspective consists in providing information on performance against the different assessment criteria, rather than an aggregate score. Aggregate scores are used to enable rankings of units or research organisations, indirectly creating competition amongst them. That was not the purpose of this evaluation. As can be noted from the structure and content indications for the Panel Reports, the emphasis is on the delivery of qualitative information, aimed at supporting R&D governance at the institutional and national level.

The conclusive analytical reports at the Evaluated Unit, field and disciplinary area level will all take the form of a SWOT analysis of performance in the EvU/field/area in the Czech republic. The strengths, weaknesses, opportunities and threats will be analysed from a scientific focus as well as systemic point of view. The panel chairs will consider the following topics during the analysis:

- The availability of appropriate scientific equipment and research infrastructure
- The adequacy of research management in the Research Organisations, including human resources management
- The adequacy of education and training of future researchers in the field
- The overall structure of the RD&I system in the field (islands of excellence, overlaps, gaps, collaboration in the research community at the national level)
- The internationalisation of the research activities
- The quality and competitive positioning of research in the field at an international level
- The alignment of the scientific focus with international trends
- The adequacy of research strategies and the role of interdisciplinary research
- The value of the research activities for society, including research-industry collaboration and knowledge/technology transfer, collaboration with government bodies and input for policy making in the field, collaboration with citizen associations, and/or outreach to the broader society

The panel experts will cover in the report only those topics where they identified significant elements of strength, weakness, opportunities or threats. In the final section, they will summarise the main points of reflection related to past performance and provide recommendations for future improvement. This can refer to both the scientific focus of the research and improvements needed to the structure of the RD&I system or institution.
The R&D Evaluation Methodology

The benefit and value for the **Evaluated Unit** will consist in:

- A view on the Research Units’ performance against each of the 5 assessment criteria, allowing for identification of the weaknesses and strengths in the EvU’s overall performance, as well as eventual pockets of excellence and areas of lower-than-average performance

- The panel conclusions and recommendations for future development of the RUs, providing a valuable input and suggestions for future strategy development, including
 - A feedback on the effects of the EvU research and HR management policies on research groups active in specific fields as well as an assessment as such of these policies
 - Input for the development of interdisciplinary collaborations

- A comprehensive view on the EvU international and national level of competitiveness in R&D

The benefit and value for the **national policy makers** will consist in:

- A comprehensive view of research performance in the country at the level of fields or areas

- Identification of areas of weaknesses and strengths in international competition

- An overview of performance against each of the five assessment criteria, suggesting the areas of major failure in the R&D system and the eventual need for systemic policy interventions.

For the principals a major value will be in a more in-depth understanding of the strengths and weaknesses of the ROs under their competence. This will support them in the development of a stronger principal-agent relationship with these ROs, which is a key component for the implementation of the institutional funding system.

The Guidelines for the panel experts in the *Evaluation Handbook* (Background report 5) give more detailed information on the process for the development of the panel reports as well as the templates.
5. Implementation of the National Evaluation of Research Organisations (NERO)

This chapter sets out the structures, procedures and measures needed for the implementation of the evaluation. Based on our current cost estimates, we propose the evaluation to take place every 6 years.

The evaluation panels and referees are the key actors in the implementation of the evaluation. We describe their composition, roles and tasks in Section 5.1.

Also a structure for the governance and management of the evaluation will need to be set up. We describe the composition and roles and tasks of this entity in Section 5.2. This includes also some considerations related to the duration of the evaluation process, i.e. from the preparation to the publication of the evaluation results.

In Section 5.3 we cover the measures that will ensure the fairness and integrity of the evaluation process. Finally, we look into possible scenarios for the implementation of NERO in Section 5.4.

5.1 The evaluation panels and referees

This section gives an overview of the evaluation panel structure, the profile of the experts involved and their working processes and rules.

More details on the processes for the panel evaluation can be found in the ‘Guidelines for the panel experts’ section of the Evaluation Handbook (Background report 5).

5.1.1 The evaluation panel structure

The evaluation is entrusted to international experts, structured in Main panels and Subject panels or acting as referees (Exhibit 33).

- There will be 6 Main panels, organised at the level of disciplinary area, and y 24 to 26 Subject panels, organised at the level of field. Referees will assess submitted research outputs and will work at the level of sub-field
- The Main panel will have a Chair and 3 additional members
- Subject panels need to be small and high-level. Our recommendation is to keep the number to 5 max 6 members per panel

For the assessment of the Interdisciplinary Research Units (IRU), Ad-hoc panels will be installed. These Subject panels will be chaired by the most relevant Main panel Chair and will include members from two or more Subject panels, covering two or more disciplinary fields.

Exhibit 33 Organisation of the evaluation experts in Main and Subject panels
The OECD field categorisation will define the work and coverage of the Main panels and Subject panels in the evaluation (see Appendix A to this report).

However, this does not imply that 36 panels will be established. In the preparation phase of the performance assessment, Subject panels will need to be defined, taking into consideration the volume of the research conducted in the CR in the specific fields, in terms of number of research units and research outputs produced over the evaluation period. This will be based upon input from the research organisations on the fields they wish to be assessed against, i.e. at the moment of registration of the research unit(s). The intent is to spread the assessment workload over the different panels as much as possible on an equal basis as well as reach the maximum level of efficiency.

The identification of the Subject panels will

• Be in line with the OECD categorisation of scientific fields in disciplinary areas and sub-fields into fields
• Spread the assessment work for scientific fields with exceptionally high research volume over two or more subject panels (i.e. aggregating the relevant subfields into 2 rather than 1 field)
• Concentrate the assessment work for scientific fields with exceptionally low research volume into one subject panel

In the context of an evaluation where only international experts are in charge of the performance assessments, it is important to ensure mechanisms and processes that can provide the panel members with context information, e.g. on the research field in the national context and/or on practices in the national R&D system.

This will be the main task of the 3 Main panel members, which will be national experts. They will only have an advisory role and will not take active part in the assessments. The Subject panels will also have the possibility to call in the support by a number of specialist advisors (max 4). These can be international field experts, providing additional field expertise, or national experts providing context information, depending on the needs of the panel members.

5.1.2 Staffing of the panels

Process

The staffing of the panels will take place in a cascade process:

• The RD&I Council proposes the main panel chairs and members, based upon a consultation process, to the Evaluation Directorate
• The Evaluation Directorate considers the suggestions and presents the list of preferred main panel chairs and members, and/or alternative candidates, to the Evaluation Management Board, responsible for the nomination
• The main panel chairs and members assign the subject panel chairs and members, which will be nominated by the Evaluation Directorate. The Evaluation Management Team will support the selection process, collecting names of candidates and their profiles, and suggesting them to the main panels. During their registration process, the Research Units have the possibility to suggest and not-suggest names for panel members
• The subject panel chairs and members assign the referees (they need to have confidence in their skills/expertise)

In their selection of chairs and other members of the subject panels, the main panels will prioritise breadth over depth in relation to the candidates’ field expertise. The main panels will consider also variety in terms of scientific disciplines, inter-
disciplinary expertise, organisational background, nationality, gender and other relevant criteria.

Profiles
Each main panel will have 4 members

• The Chairs of the main panels will be international experts with a strong reputation in the field of discipline and (preferably) experience in industry or other user communities.

• The three other members will be Czech nationals. One member originates from the national research community and two members are ‘outsiders’ to the research communities, e.g. one member of the user communities (such as industry) and one member from a relevant funding agency or ministry

• At least one member has expertise in inter-disciplinary research

All members of the subject panels will be international experts, to minimise conflicts of interest.

Subject panel members should have a broad view of fields and major areas. Breadth should be prioritised over depth, especially for the panel chairmen. They should be respectable and have the capacity to consider societal relevance. Faculty deans of universities and researchers with strong collaboration with industry are good profiles.

In each subject panel, some members should have the expertise and experience that is required to assess the societal relevance of research.

Referees will have a fine-grained expertise. They will work in remote to keep costs down. Also the referees will be international experts only.

5.1.3 Roles and tasks of the panels
The role of the Main panel is to moderate. It has an auditing function and provides a bridge between the Evaluation Management Team and the panels.

Core tasks of the Main panels are

• To review the nomination of the Subject panel chairs by the Evaluation Management Team, with a specific focus on the adequacy of their expertise and the inclusion of experts with experience in applied/industrial research

• To review the reports on the calibration exercises in the Subject panels on quality and consistency and ensure that any inconsistencies in the assessment standards are investigated and explained and/or amended

• To review the assessments at RU level as they emerge throughout the assessment phase with a specific focus on the implementation of the established procedures and criteria, and on the consistency in the application of the overall standards of assessment in the Subject panels (especially related to the outcomes of the calibration exercises)

• To discuss and take decisions in matters of conflicts of interest and other sensitivities

• To discuss and take decisions in eventual cases of gaming or insufficient fairness during the process

The Main panel Chairs are key in the evaluation process in their decision-making role in any sensitive matters. They guide and support the Subject panel Chairs and most important, ensure consistency in the Subject panels’ approach to evaluation, thus guaranteeing a fair evaluation for all. They are also in charge of the conclusive analytical report at the Disciplinary Area level.

The relevant Main panel Chairs will also jointly decide on the acceptance or refusal of Interdisciplinary Research Units applications.
The R&D Evaluation Methodology

The Main panel Members constitute an additional ‘auditing’ element to the panel review. They will advise on matters relating to insufficient or unclear information in the RUs' submissions, and support the Main panel Chair, amongst others by providing information on the national context whenever required.

In the event that a panel chair is unable to perform a task, because of illness or other reason, the Evaluation Management Team will appoint an acting chair from the other members of the Main panel.

The Subject panels will have the primary function of conducting the performance assessment. They are to make collective judgements on the performance of each RU in their field.

Subject panel Chairs are to report to the Main panel Chair and the Evaluation Management Team on progress and eventual issues emerging where decision making by the main panel Chair and/or the Evaluation Management Team is required (eligibility, quality of the submission, conflicts of interest, gaming). They are also responsible for the proper conduct of the calibration exercise and the overall implementation of the standard working methods.

They will be in charge of the quality review of the conclusive analytical reports at the Evaluated Unit level written out by staff members of the Evaluation Management Team as well as of the evaluation reports at the Research Unit level, prepared by the responsible panel members. They will write the conclusive analytical report in their field of discipline and support the Main panel Chair in the development of the report at disciplinary area level.

Subject panel members will be in charge of the assessment of a number of Research Units. Two panel members will assess each Research Unit. They will do the assessment in remote and agree upon a draft RU report, which will then be submitted to the full Subject panel for discussion and approval during the panel meeting.

The referees will have the exclusive role of assessing the excellence of a limited set of submitted research outputs. There will be two Referees for each submitted research output: a First and a Second reader. Referees will work in remote, taking account of the outcomes of the Subject panel calibration exercise. They will produce a written assessment about the research output submitted by the RUs and send it to the relevant Subject panel members.

5.1.4 Working methods

Main Panel working methods

- Consensus and decision-making. The main panels are to review assessments at RU level from their subject panels as they emerge throughout the assessment phase. They are to confirm that the published procedures and criteria have been implemented, and that overall standards of assessment have been applied consistently. The main panels will ensure that any inconsistencies in the assessment standards are investigated and explained, before accepting the evaluation results of the subject panels. Upon approval, the main panels will report the assessment to the Management Team.

- Meetings. The different main panels will meet regularly throughout the preparatory and assessment phases with the purpose of ensuring close communication and collaboration, addressing any issues, and ensuring that procedures are followed.

- Cross-panel collaboration. The Main panels may identify boundary areas where the fields of multiple panels overlap, and may decide to assign individual panel members to more than one of these overlapping panels. As such, research within these boundary areas can be assessed with greater consistency.
• *Ad-hoc panels for interdisciplinary research units*. The Main panels will also decide on the applications for the registration of Interdisciplinary Research Units. If accepted, the Main panels will install an interdisciplinary ad-hoc panel. The Main panel Chair of the major research area of the RU will act as the chair of this ad-hoc panel and suggest the members for this interdisciplinary panel to the Evaluation Team.

• *Evaluation reports at the EvU level*. In those cases where an EvU has more than 1 RU, staff of the Evaluation Management Team will write out a conclusive analytical report at the Evaluated Unit level. The Main panel Chairs will decide on the Subject panel chair that will be responsible for quality reviewing the EvU panel report.

• *Specific issues for the operation of panels*. Important issues for the operation of panels (main panels and subject panels) are:

 – *Conflicts of interest*. All main and subject panel chairs, members, referees, secretaries and special advisors are to observe the arrangements for managing potential conflicts of interest. As such, they are obliged to record declarations of interest and avoid potential conflicts of interest.

 – *Dealing with absences of the chair*. A deputy chair is elected for each main and subject panel, to chair the panel in case of planned and unplanned absences of the chair.

 – *Confidentiality arrangements*. All main and subject panel chairs, members, referees, secretaries and special advisors are bound by the terms of confidentiality arrangements. These arrangements must ensure an effective management and operation of the evaluation process.

• *Calibration exercises*. Calibration exercises will be undertaken at an early stage in the assessment by all subject panels, in order to establish a common view on the implementation of assessment standards and quality levels. The main panel chair will attend these calibration exercises of the subject panels. In addition, the main panels are to receive and review reports on these calibration exercises from the subject panels.

Subject panel working methods

• *Cross-referrals*. The Research Units will have the possibility to recommend cross—referrals among Subject panels in a specific disciplinary area for their assessment. The Chairs of the relevant Main Panel and Subject Panels will use this information to allocate the RU to one of the Subject Panels that will act as ‘host’ Subject panel and bear the key responsibility for the assessment. They will ensure that the Subject Panel members have sufficient expertise to assess the RU and that panel members of a second or third Subject Panel are involved in the assessment of the RU where necessary. Where parts of the submission are cross-referred, the ‘host’ Subject Panel will specify the scope of advice that it is seeking: this may range from advice on the RU performance against specific assessment criteria or sub-criteria, to advice on specific features of the narratives or data provided. The ‘host’ Subject Panel will retain responsibility for the decision on the quality level assigned.

• *Decision-making*. The subject panels will take decisions collectively, following the published procedures and criteria. During the panel meetings, the Subject panels will debate the reasoning for the quality profiles drafted by the responsible panel members in order to reach consensus. If consensus cannot be reached, decisions will be taken by majority vote, in which the chair holds a casting vote.

• Specific working methods for the subject panels include:

 – *Allocating work*. The subject panel chair will allocate work to panel members, taking into account their expertise. Each member and referee must be
allocated a significant volume of material to assess, to ensure that each makes a significant contribution to the panel’s assessment work

- **Calibration of assessment standards.** Subject panels will undertake early calibration exercises to ensure that subject panel members (and referees) develop a common understanding of the quality levels. The subject panels will continue to discuss the application of the quality levels and will keep under review the scoring patterns of panel members throughout the assessment process to ensure consistency in the subject panel’s standards of assessment.

- **Clarifications.** Where the subject panel feels that essential information is missing or unclear, they can ask the EvUs for clarification, upon which the panel secretariat will collect the additional information by email or phone. The additional information will be distributed to the subject panel members.

5.2 Evaluation governance and management

5.2.1 The governance and management structure

We defined the entities responsible for the governance and management of the National Evaluation of Research Organisations (NERO) implementation as follows:

- The Evaluation Management Board, acting as overall governance and supervisory body
- The Evaluation Management Team, responsible for the operational management of evaluation

The **Evaluation Management Board** is the supervisory and ultimate governance body for the evaluation exercise. In order to reach the maximum level of legitimisation, this body should be composed of representatives of the R&D governing bodies (funding ministries and ministries with responsibilities for research institutes, the Academy and the agencies), chaired by a representative of the Government Office. The Office of the Government installs the Evaluation Management Board. The role of the RD&I Council, as the representative body of the Research Organisations, is to act as an *advisory body* for both the development and implementation of the evaluation, providing scientific advice as well as support to the Evaluation Management Board and the Evaluation Management Team.

The tasks of the evaluation management structure, i.e. the **Evaluation Management Team**, are not limited to the management of a specific run of NERO; instead, they should be seen in a broader and longer-term perspective. In fact, the implementation of NERO is part of an **evaluation cycle** (Exhibit 34). In this study we have designed an evaluation and funding system that is intended to constitute an integral part of the R&D policy cycle in the Czech Republic. Especially because the evaluation results will inform the performance-based research-funding component of the institutional funding system, NERO needs to be considered as a policy intervention. As a consequence, to a certain extent the evaluation methodology will be ‘dynamic’, i.e. acting upon and reflecting changing policy needs. As for any other policy intervention, its effects also need to be monitored, both the intended and unintended ones, so that the methodology can be adjusted if needed in the next run of the evaluation.
Exhibit 34 The evaluation cycle

The evaluation cycle can be divided in three main phases:

- The *preparation phase* during which the evaluation methodology is revised (if necessary) and the evaluation is launched with the publication of the Evaluation Protocol.

- The NERO *implementation phase* during which the self-assessment and panel assessments will take place and the results of the evaluation reported and communicated.

- The *follow-up phase* during which the effects of the evaluation outcomes on the RD&I system will be monitored and analysed, including a consultation of the RD&I community and policymakers.

Central to this evaluation cycle stands the policy decision for future revision of the evaluation methodology, based upon the analysis performed in the follow-up phase and taking into consideration the RD&I policy priorities.

A *stable* structure for the evaluation management is needed in order to ensure not only a professional implementation of NERO but also the effective take-up of the follow-up tasks, i.e. collecting the needed evidence for the policy decisions to be taken for the next run of NERO. One should envisage also that this evaluation structure will be in charge also of the implementation of programme evaluation in the Czech RD&I governance system.

This implies that the Evaluation Management Team should consist of a *core team* that will include a number of directors and office staff members, complemented with *temporary staff* for each specific run of NERO.
5.2.2 Roles and tasks of the Evaluation Management Team

Exhibit 35 lists the main tasks of the evaluation management team in the different phases of the evaluation cycle.

We cover these more in detail in the ‘Guidelines for the Evaluation Management’ section of the Evaluation Handbook (Background report 5).

Specifically, in the preparation phase, the main management tasks are:

- **The set up of the panel evaluation structure** – this includes the nomination of the evaluation management board; the drafting of confidentiality and conflict of interest statements; the construction or update of an international experts database; and the identification and selection of the Main panel chairs and members.

- **The design and publication of the evaluation protocol** – this stands for the finalisation of the evaluation methodology, including the eventual update of eligibility criteria (thresholds, outputs, etc), assessment criteria and indicators; the set-up of the self-assessment reports; the drafting of the bibliometric data reports; the design and development of the guidelines for the panels and the participating research organisations; the drafting of the panel report templates; the planning of the evaluation process and establishment of deadlines; the drafting of the evaluation protocol itself; and the launch of the evaluation.

- **The set-up of the IT support structure** – For the evaluation process several information systems will be used, such as platforms for the submission of the selected research outputs and the self-assessment reports and platforms for the workflow management of the panels’ and reviewers’ work. A linkage between the submission forms and the information system used for the collection and analysis will need to be established, as well as an interlinking with the data in the RD&I Information System. In the preparation phase, all these systems have to be designed, optimised and tested.

- **The management of the registration of Evaluation Units and Research Units** – this includes the delivery of data support to the Evaluated Units through an analysis of the data stored in the RD&I Information System; the set-up of a help desk for the Evaluated Units; and the eligibility and quality check of the registrations.

Exhibit 35 Main tasks of the evaluation management team
Main management tasks in the **evaluation phase** are:

- **Finalisation of the panel evaluation structure** – this stands for the definition of the Subject panels based on the registration of Research Units combined with an analysis of the data in the RD&I Information System in order to estimate the panels’ and the referees’ workload; the identification, selection and contracting of the Subject panel chairs and members and the referees; the management of the decision-making on cross-referrals and Inter-disciplinary Research Units; and the contracting of the panel secretariats.

- **Handling the submission of the research outputs and self-assessments** – relevant management tasks include the helpdesk for the Evaluated Units; the delivery of data support to the Evaluated Units; the eligibility and quality check as well as control on confidentiality issues; management of the panels’ workflow and the transfer of submitted outputs and self-assessments.

- **Data analysis and reporting to the panels** – this includes the collection and analysis of bibliometric data - at the level of disciplinary areas, fields, and Research Units; and the drafting of the bibliometric data reports

- **Supporting the peer review and panel evaluation** – this includes a broad range of support activities to the Subject panels, Main panels and referees, ranging from the support during the remote reviews and assessments and the Subject panel meetings (the panel secretariats) to workflow management, progress monitoring, and reporting to the Evaluation Management Board (management reports)

- **Performing random audits of the submissions by RUs** - A first type of audit concerns a request for proof regarding, for example, the number of researchers, PhD graduates, and strategic partnerships and the volume of grants and contract research. In the interest of proportionality, the first type of audits is done for around 5% of EvU submissions. A second type of audit is the confrontation of submitted information with information in databases about, for example, staff and revenues of research organisations, dissertations, grants and service contracts. In the interest of proportionality, the second type of audits is done for around 10% of EvU submissions. They will also perform targeted audits in case of concerns raised by Main or Subject panel members and Referees. As much as possible, random audits are spread across different research organisations.

Main tasks for the final steps in the evaluation phase are:

- The **coordination of the finalisation of the Panel Reports** at the Research Unit, Field and Disciplinary Area level, including the final meetings of the Subject panel chairs with the Main panel chairs

- The **drafting of the conclusive analytical reports** at the Evaluated Unit level

- The **publication of the evaluation results** and the transfer of structured information to the R&D governance bodies, including information for funding purposes

38 The structure of the self-assessment template is defined such that there is no need for statistical data analysis or additional drafting of ‘comprehensive data reports’ as it was done in the Small Pilot Evaluation (see Background report 10: The Small Pilot Evaluation - feedback and results)
Main tasks in the finalisation phase can be divided in short-term and mid-term activities. Main follow-up tasks in the shorter term include:

- In a first instance, this regards the reporting on the evaluation management process, for the sake of transparency but also as part of a broad and shared learning process. In contrast to the other (internal) management reports and minutes of the management board and team meetings, the final management report this report should be made public. The main purpose of this final management report is an open communication on the process for the evaluation implementation and the criteria used for decision making; the challenges encountered and solutions found; the lessons learned for future evaluation exercises; and the details of the direct costs – and if possible an estimate of the indirect costs.

- Another main task is the delivery of analytical support to the R&D governance bodies. As is described in the Final report 2 - The Institutional Funding Principles, the evaluation results will constitute important information for the R&D governance bodies in their management of the Research Organisations of their competence - and more specifically the performance agreements. The evaluation results will constitute strategic information also the broader R&D policy-making activities of the R&D governance bodies, such as the design of policy interventions or programmes.

Mid-term follow-up activities are centred on the monitoring of the effects of the evaluation and funding system. This should have both a backward and forward-looking function, i.e. assessing whether and to what extent the objectives have been reached and identifying the elements that should be modified in order better to reach the objectives or to avoid the unintended negative effects. They will include data collection and analysis activities and in the last steps, a proper stakeholder consultation process in support of the decision-making for an eventually revised evaluation methodology.

We have estimated that the evaluation process will need three years for its completion (i.e. from the preparatory phase to the publication of the reports). Roughly, each of the three steps, i.e. the preparation, evaluation and finalisation, will take a year each.

Exhibit 36 maps out an indicative timeline for the main milestones in the evaluation process. This time-line accounts for a full-scale evaluation and takes into account the needed lapse times for the involvement of the panel experts and the submissions by the participating Research Units, as well as the time needed for the evaluation management team to handle the different activities, seeing the workload involved and especially, the number of experts to be nominated.

While three years may seem an exaggeratedly long time, it is in the norm of international practice. A more complex evaluation system for a bigger country like the UK takes approximately five years (the preparatory phase for the RAE2008 in the UK started in 2004, with the results published in 2009).39

39 Source: RAE2008, RAE Manager’s Report, April 2009
Nevertheless, one should consider that the time needed for the evaluation process is determined by a number of key factors, i.e.

- The need for *revision of the evaluation methodology and its tools*, determining the time needed for the preparation phase
- The *volume of the work*, i.e. the number of Evaluated Units and Research Units, which influences the workload for the panels
- The *need for a lapse time* between the time of nomination of the panel experts and their active involvement – the golden rule is at least 3 months
- The *need for a lapse time* between the launch of the evaluation (with the publication of the evaluation protocol) and the submission of the Research Units’ research outputs and self-assessments. The Research Units need to be given the needed time to collect their data, select the research outputs to submit and run their internal self-assessment process. Three months need to be considered as an absolute minimum

In other words, the number of three years is indicative; the actual duration of the evaluation process will depend on the specific circumstances for each run of the National Evaluation of Research Organisations, depending on the key factors outlined above.
Exhibit 36 Indicative time-line of the evaluation process

<table>
<thead>
<tr>
<th>Task</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparatory phase</td>
<td>Evaluation phase</td>
<td>Finalisation</td>
</tr>
<tr>
<td></td>
<td>Mth 1-3</td>
<td>Mth 4-6</td>
<td>Mth 7-9</td>
</tr>
<tr>
<td>Set-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Launch of the evaluation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Registration of the EvUs – indicating the RUs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kick-off meetings of Main panels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of the research outputs for review</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of the self-assessment forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kick-off meeting of the Subject panels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote review & assessments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subject panel evaluation meetings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RU Panel reports - finalisation & approval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical reports at EvU, Field & Disciplinary Area level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publication results on the website</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3 Risks and risk management

In this section we set out the main measures developed in order to ensure the fairness and integrity of the evaluation process.

5.3.1 Integrity of the panel evaluation process

Confidentiality

- The Management Team is responsible for preparing a confidentiality agreement and may prepare detailed guidelines for ensuring confidentiality of the evaluation process. In doing so, the Management Team will consult with the Evaluation Management Board and the chairs of the main panels. The confidentiality agreement should address, at least, the topics described below.

- The confidentiality agreement protects the rights (including Intellectual Property Rights) of the research organisations, EvUs, RUs and researchers, as well as the rights of panel members and other persons that contribute to the evaluation process (for example, to minimise the risk of claims for a breach of Intellectual Property Rights or disclosing confidential information).

- All persons involved in the evaluation process, including the Evaluation Management Board, the Management Team, the main panels, subject panels, referees and special advisers, are obliged to sign the confidentiality agreement.

- All meetings of the Evaluation Management Board, the Management Team, the main panels and subject panels as well as information and materials used in the evaluation process are confidential. The panel members are obliged not to disclose any information and materials related to the evaluation to third parties either in oral, written or electronic form, for the whole period of work as a panel member and after that.

- Panel members and all other persons involved in the evaluation process only use the confidential information for the purpose of the evaluation.

- On behalf of the main panels, the Management Team will assess the submissions by the EvU for any information that is highly confidential and that may not be shared with all members of the relevant main panels and/or subject panels. The Management Team will take the necessary actions (such as only disclosing specific information to selected panel members) after consultation with the chairs of the main panels.

- Panel members and all other persons involved in the evaluation process have to take appropriate measures to address the security risks related to making physical copies for personal use or using electronic communication (such as email) for communication with panel chairs and other persons involved in the evaluation process.

- Panel members are not allowed to contact research organisations or researchers in relation to information that is shared on a confidential basis, in the context of the evaluation process.

- In case of doubts about confidentiality issues, panel members and other persons involved in the evaluation process immediately contact the Management Team or a main panel chair.
The R&D Evaluation Methodology

Transparency

- The evaluation protocol, the text of the confidentiality agreement and any additional guidelines are publicly available.
- The names of the main panel chair and members are public. The names of the subject panel chairs and members will be made public after finalisation of the evaluation process. The names of referees are not public.
- Minutes must be taken of all meetings of the Evaluation Management Board, the main panels and subject panels. These are made available to the Evaluation Management Board, the Management Team and the main panels. Members of subject panels will have access to the minutes of the main panel to which they are accountable. The minutes of meetings will not be public.
- The panel report per RU, the overview report for EvUs with more than 1 RU (prepared by the subject panel chair) and the analytical report per field (prepared by the subject panel chair) and per disciplinary area (prepared by the main panel chair) will become public when the evaluation process is finalised.

Conflicts of Interest

- The Management Team prepares a statement about Conflict of Interest, in consultation with the Evaluation Management Board and the chairs of the main panels. The statement about Conflicts of Interest should address, at least, the topics described below.
- The statement about Conflicts of Interest intends to protect the rights of the research organisations, EvUs, RUs and researchers, as well as the rights of panel members and other persons that contribute to the evaluation process.
- All persons involved in the evaluation process, , are obliged to fill in and sign the statement about Conflicts of Interest. This includes all members of the Evaluation Management Team, the Management Team, the panel secretariat, the main panels, the subject panels, the referees and the specialist advisors.
- All members of the main panels and subject panels must indicate any close personal or professional relations with the research organisations, EvUs and RUs in the field of discipline or the sub-field for which they will contribute to the evaluation process. Examples include planned, recently ended or honorary positions in a research organisation, more than three co-publications with researchers from one research organisation, or collaboration in applied research and commercialization.
- Statements about Conflicts of Interest will be analysed and discussed by the Evaluation Management Team. The Management Team will suggest eventual corrective measures to the Chairs of the main panels and subject panels.
- A conflict of interest exists if an expert:
 - Stands to benefit directly or indirectly from the evaluation
 - Has a close family or personal relationship with any person employed in the evaluated organisation
 - Has been employed or contracted by an evaluated organisation
 - Has or has had during the last five years, a scientific collaboration with the evaluated organisation.
 - Has or has had in the past, a mentor/mentee relationship with staff of the evaluated organisation.
5.3.2 Audits and verifications

- The submission document that RUs use to submit information includes a statement about the accurateness of the information and the willingness to deliver any proof, upon request.

- The panel secretariat, in close collaboration with the Management Team, performs random audits of the submissions by RUs. As much as possible, random audits are spread across different research organisations.

- The first type of audit concerns a request for proof regarding, for example, the number of researchers, PhD graduates, and strategic partnerships and the volume of grants and contract research. In the interest of proportionality, the first type of audits is done for around 5% of EvU submissions.

- A second type of audit is the confrontation of submitted information with information in databases about, for example, staff and revenues of research organisations, dissertations, grants and service contracts. In the interest of proportionality, the second type of audits is done for around 10% of EvU submissions.

- The panel secretariat, in close collaboration with the Management Team, performs targeted audits in response to concerns raised by panel members and referees.

- Specific verifications in using the R&D Information System and the bibliometric analyses will take place.

The assessment criteria are accompanied with a clause declaring: If fraud or dishonesty is detected, the panels will assign the lowest starred quality levels for the RU against all assessment criteria.

5.4 Scenarios for the implementation of the EM

The Evaluation Methodology that we propose is designed to provide input both at the national level and institutional level (to the extent possible), in terms of strategic information and indications for institutional funding allocations. It is a panel-based evaluation system that uses a single framework for assessment across all disciplines and research organisation typologies, with a common set of data required in all submissions, standard definitions and procedures, and assessment by expert panels against broad generic criteria.

These characteristics of the Evaluation Methodology, combined with its function of informing institutional funding, imply the need for an all-round evaluation, contemporaneously for all Research Organisations in the system. This will require a significant effort, from all actors involved.

The ‘multi-functional’ characteristics of the Evaluation Methodology also imply that there is a limit to the evaluation system to meet the differing needs for evaluation of the individual types of Research Organisation. We cover both of these topics in the sections below and discuss possible solutions.

5.4.1 Implementation of the evaluation in groups of RO-types or fields

We considered the possibility - and the effects - of spreading the evaluation effort and distributing the administrative burden over several years. Possibilities are to run the evaluation some fields at a time, or to have different evaluation runs for the different types of ROs.
Both of these options present the advantage of a more continuous workload for the evaluation office / agency and a less disruptive evaluation procedure for all parties involved. They would also create a better foothold of the evaluation in the RD&I system, and especially easier appropriation of the evaluation results by both the Research Organisations and the funding providers.

However, they both present significant disadvantages compared to the process we suggest:

- The organisation of the evaluation in groups of fields has the critical disadvantage that it is not in line with the set-up of the funding system. Several EvUs conduct research in different fields and the dispersion in time of the evaluation results would significantly complicate their use for the PRFS funding component, if not inhibit it completely. It may also make the assessment of interdisciplinary research more costly and burdensome. Finally, national policy makers would be able to reach a comprehensive view of the country’s performance only over time, which would make coordinated policy making more difficult.

- The organisation of evaluations per RO-type seems a more feasible option, as the mission-based funding pots would allow for the management of the time differences in the evaluation. However, it also has major disadvantages. First, it will involve higher costs for the evaluation overall because subject panels would only look at disciplines in one type of Research Organisation rather than evaluating the same discipline across different type of Research Organisations “in one sweep”. Another major disadvantage is that it undermines the unity of the method for evaluation, which is critical to ensure a fair evaluation and funding system. 'Unity of method' refers not only the tools or criteria used for the collection and processing of information, but (because judgment is first of all human) it requires also the use of the same panel members for all actors in a field. Only if the same panel members are used can consistency in the approach fully be ensured. Finally, simultaneous coverage at the field level of all types of ROs is necessary in order to gather useful information at the national level on the country’s competitive profile in the field, its strengths or weaknesses (e.g. internationalisation, knowledge transfer, etc), fragmentation issues (e.g. duplications) and policy interventions needed.

Any of the two options for distribution of the evaluation effort therefore shows major disadvantages. Our conclusion is that they are both inadequate especially because in both options a core value of the Evaluation Methodology would go lost, i.e. the capacity to give the comprehensive national view.

5.4.2 Increase of the RO-type specific dimension

The RD&I community may want to enrich the Evaluation Methodology with methods that would allow for a more in-depth view on performance or outcomes and impacts of the broader range of activities implemented by the Research Organisations. We can see the usefulness of such deeper evaluation in particular at the level of different types of Research Organisations.

In the context of such ‘mission-specific’ evaluations, it is important that the evaluation methodology does not lose its full capacity to create strategic information at the national level, setting the Czech Republic firmly in its global context. For this purpose, we see the Evaluation Methodology that we propose as a necessary common spine for these ‘mission-specific’ evaluations.
Final report 1: The R&D Evaluation Methodology

Topics for further investigation as additions to the current Evaluation Methodology could include

- For the Scientific Research Organisations, an enhanced focus on the quality of research and for the universities, the interaction with teaching and PhD education. The preference would be for an enhanced use of peer review and expert panels.

- For the Industry & Business services Research Organisations: an enhanced focus on economic performance, social impacts, customer feedback, and research quality. The methods used would be predominantly social scientific methods, such as user surveys, interviews etc.

- For the Public Services Research Organisations, an enhanced focus on mission performance, usefulness of the research to policy formulation processes, social impacts, and research quality. Also in this case there would be a predominance of social scientific methods, with use of peers only if quality is a major issue.

- For the National Resources, an enhanced focus on mission performance, usefulness of the services to research, social impacts, and research quality. Also in this case there would be a predominance of social scientific methods, with use of peers only if quality is a major issue.
Appendix A - OECD field structure

<table>
<thead>
<tr>
<th>Disciplinary Area</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Natural sciences</td>
<td>1.1 Mathematics</td>
</tr>
<tr>
<td></td>
<td>1.2 Computer and information sciences</td>
</tr>
<tr>
<td></td>
<td>1.3 Physical sciences and astronomy</td>
</tr>
<tr>
<td></td>
<td>1.4 Chemical sciences</td>
</tr>
<tr>
<td></td>
<td>1.5 Earth and related environmental sciences</td>
</tr>
<tr>
<td></td>
<td>1.6 Biological sciences</td>
</tr>
<tr>
<td></td>
<td>1.7 Other natural sciences</td>
</tr>
<tr>
<td>2 Engineering and technology</td>
<td>2.1 Civil engineering</td>
</tr>
<tr>
<td></td>
<td>2.2 Electrical engineering, electronic engineering, information engineering</td>
</tr>
<tr>
<td></td>
<td>2.3 Mechanical engineering</td>
</tr>
<tr>
<td></td>
<td>2.4 Chemical engineering</td>
</tr>
<tr>
<td></td>
<td>2.5 Materials engineering</td>
</tr>
<tr>
<td></td>
<td>2.6 Medical engineering</td>
</tr>
<tr>
<td></td>
<td>2.7 Environmental engineering</td>
</tr>
<tr>
<td></td>
<td>2.8 Environmental biotechnology</td>
</tr>
<tr>
<td></td>
<td>2.9 Industrial Biotechnology</td>
</tr>
<tr>
<td></td>
<td>2.10 Nano-technology</td>
</tr>
<tr>
<td></td>
<td>2.11 Other engineering and technologies</td>
</tr>
<tr>
<td>3 Medical and Health sciences</td>
<td>3.1 Basic medical research</td>
</tr>
<tr>
<td></td>
<td>3.2 Clinical medicine</td>
</tr>
<tr>
<td></td>
<td>3.3 Health sciences</td>
</tr>
<tr>
<td></td>
<td>3.4 Medical biotechnology</td>
</tr>
<tr>
<td></td>
<td>3.5 Other medical sciences</td>
</tr>
<tr>
<td>4 Agricultural sciences</td>
<td>4.1 Agriculture, forestry, and fisheries</td>
</tr>
<tr>
<td></td>
<td>4.2 Animal and dairy science</td>
</tr>
<tr>
<td></td>
<td>4.3 Veterinary science</td>
</tr>
<tr>
<td></td>
<td>4.4 Agricultural biotechnology</td>
</tr>
<tr>
<td></td>
<td>4.5 Other agricultural sciences</td>
</tr>
<tr>
<td>5 Social sciences</td>
<td>5.1 Psychology</td>
</tr>
<tr>
<td></td>
<td>5.2 Economics and business</td>
</tr>
<tr>
<td></td>
<td>5.3 Educational sciences</td>
</tr>
<tr>
<td></td>
<td>5.4 Sociology</td>
</tr>
<tr>
<td></td>
<td>5.5 Law</td>
</tr>
<tr>
<td></td>
<td>5.6 Political Science</td>
</tr>
<tr>
<td></td>
<td>5.7 Social and economic geography</td>
</tr>
<tr>
<td></td>
<td>5.8 Media and communication</td>
</tr>
<tr>
<td></td>
<td>5.9 Other social sciences</td>
</tr>
<tr>
<td>6</td>
<td>6.1 History and archaeology</td>
</tr>
<tr>
<td>Disciplinary Area</td>
<td>Field</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Humanities</td>
<td>6.2 Languages and literature</td>
</tr>
<tr>
<td></td>
<td>6.3 Philosophy, ethics and religion</td>
</tr>
<tr>
<td></td>
<td>6.4 Art (arts, history of arts, performing arts, music)</td>
</tr>
<tr>
<td></td>
<td>6.5 Other humanities</td>
</tr>
</tbody>
</table>
In collaboration with

NIFU
Nordic Institute for Studies in Innovation, Research and Education

Technology Centre ASCR

InfoScience
PRAHA